Python中对数组集进行按行打乱shuffle的方法
如下所示:
import numpy as np y1=np.random.randint(2,10,(5,3)) print ("排序列表:", y1) np.random.shuffle(y1) print ("随机排序列表:", y1)
以上这篇Python中对数组集进行按行打乱shuffle的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
在python中以相同顺序shuffle两个list的方法
通常做机器学习问题时,需要准备训练数据,通常会把样本数据和标签存放于2个list中,比如train_x = [x1,x2,...,xN][x1,x2,...,xN],train_y = [y1,y2,...,yN][y1,y2,...,yN]. 有时候是需要将数据shuffle后再做处理的(比如,批量梯度下降算法,需要数据是打乱的). 这时就需要以相同的顺序打乱两个list,那么在python中如何实现呢?可以通过设置相同的随机种子,再shuffle的方式来实现. 代码如下: import ra
-
Python使用random.shuffle()打乱列表顺序的方法
Python的random.shuffle()函数可以用来乱序序列,它是在序列的本身打乱,而不是新生成一个序列. 示例: from random import shuffle x = [[i] for i in range(10)] shuffle(x) shuffle()返回的是None,列表x的顺序被打乱. 以上这篇Python使用random.shuffle()打乱列表顺序的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
python中将两组数据放在一起按照某一固定顺序shuffle的实例
有的时候需要将两组数据,比如特征和标签放在一起随机打乱, 但是又想记录这种打乱的顺序,那么该怎么做呢?下面是一个很好的方法: b = [1, 2,3, 4, 5,6 , 7,8 ,9] a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h','i'] c = list(zip(a, b)) print(c) random.Random(100).shuffle(c) print(c) a, b = zip(*c) print(a) print(b) 输出: [('
-
Python中对数组集进行按行打乱shuffle的方法
如下所示: import numpy as np y1=np.random.randint(2,10,(5,3)) print ("排序列表:", y1) np.random.shuffle(y1) print ("随机排序列表:", y1) 以上这篇Python中对数组集进行按行打乱shuffle的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
Python 取numpy数组的某几行某几列方法
直接分析,如原矩阵如下(1): (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2): (2) 错误分析: 取 C 的1 3行,3 4 列,定义 Z = [0,2] #定义行数 d = [2,3] #定义列数 #代码 C_zd = C[z,d] 则结果为: 由结果分析取的是第一行第三列和第三行第四列的数据,并非我们想要的结果. 正确分析: C_A = c[[0,2]] #先取出想要的行数据 C_A = C_A[:,[2,3]] #再取出要求的列数据 print(C_A) #输
-
python中实现数组和列表读取一列的方法
在python中,普通的列表list和numpy中的数组array是不一样的,最大的不同是:一个列表中可以存放不同类型的数据,包括int.float和str,甚至布尔型:而一个数组中存放的数据类型必须全部相同,int或float. 在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,4]需要4个指针和四个数据,增加了存储和消耗cpu,而array1=numpy.array([1,2,3,4])只需要存放四个数据
-
基于Python中numpy数组的合并实例讲解
Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组
-
python中字符串数组逆序排列方法总结
python中字符串数组如何逆序排列?下面给大家介绍几种方法: 1.数组倒序: 原始元素的倒序排列 (1)切片 >>> arr = [1,2,3,4,3,4]>>> print (arr[::-1])[4, 3, 4, 3, 2, 1] (2)reverse() >>> arr = [1,2,3,4,3,4]>>> arr.reverse()>>> print (arr)[4, 3, 4, 3, 2, 1] (3)r
-
一篇文章弄懂Python中所有数组数据类型
前言 数组类型是各种编程语言中基本的数组结构了,本文来盘点下Python中各种"数组"类型的实现. list tuple array.array str bytes bytearray 其实把以上类型都说成是数组是不准确的.这里把数组当作一个广义的概念,即把列表.序列.数组都当作array-like数据类型来理解. 注意本文所有代码都是在Python3.7中跑的^_^ 0x00 可变的动态列表list list应该是Python最常用到的数组类型了.它的特点是可变的.能动态扩容,可存储
-
python中的数组赋值与拷贝的区别详解
具体的注解我已经写在了程序里面:通俗的解释了python里面的浅拷贝与深拷贝的不同,请看程序. # -*- coding: utf-8 -*- import numpy as np import copy as cp import matplotlib.pyplot as plt import time import math fig = plt.figure() ax = fig.add_subplot(241) # 定义一个多维数组 x = np.array([[1, 2, 3], [4,
-
python中numpy数组与list相互转换实例方法
python的使用之所以方便,原因之一就是各种数据类型各样轻松的转换,例如numpy数组和list的相互转换,只需要函数方法的使用就可以处理.numpy数组使用numpy中的array()函数转换为list,list转使用tolist()方法转换为numpy数组,本文将向大家演示相互转换的过程. 1.numpy数组转list:使用numpy中的array()函数 np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) #转换后,可进行np.array的方法
-
Python中numpy数组的计算与转置详解
目录 前言 1.numpy数组与数的运算 2.numpy相同尺寸的数组运算 3.numpy不同尺寸的数组计算 4.numpy数组的转置 总结: 前言 本文主要讲述numpy数组的计算与转置,讲相同尺寸数组的运算与不同尺寸数组的运算,同时介绍数组转置的三种方法. numpy数组的操作比较枯燥,但是都很实用,在很多机器学习.深度学习算法中都会使用到,对numpy数组的一些操作. 1.numpy数组与数的运算 主要包括数组与数的加减乘除运算,废话不多说,看代码: import numpy as np
-
python中ndarray数组的索引和切片的使用
索引和切片相当于是对数组中内容的读(read)或者查询(inquiry).是我们获取有用信息(demanded infomation)的重要方法. 对于索引 对于1维数组:在数组名的后面用中括号[]包括索引编号,括号中填写所查询数组的编码.比如:data[1] 对于n维数组:有两种方式 第一种:用列表表示所查询数的坐标值,如data_2dim[1,0] 第二种:把多维数组看成一位数组套娃,依次取值,如data_2dim[1][0] 对于切片 对于1维数组:在数组名后加上中括号[],在括号中填写切
随机推荐
- 深入分析jsonp协议原理
- AngularJs实现ng1.3+表单验证
- IOS中对Url进行编码和解码示例
- php正则表达式的基本语法总结
- Yii框架表单提交验证功能分析
- C#线程入门教程之单线程介绍
- 百度 popup.js 完美修正版非常的不错 脚本之家推荐
- MySQL 随机查询数据与随机更新数据实现代码
- JS如何设置cookie有效期为当天24点并弹出欢迎登陆界面
- PHP实现的Redis多库选择功能单例类
- C# winform循环播放多个视频
- 程序员应该投资的10件事
- 用生成器来改写直接返回列表的函数方法
- SQL Server 复制需要有实际的服务器名称才能连接到服务器
- python利用urllib实现爬取京东网站商品图片的爬虫实例
- C#模拟链表数据结构的实例解析
- JAVA中的基本数据类型
- JavaScript中的View-Model使用介绍
- winasse.exe的手工查杀流程[图文]教程
- C#扩展方法实例分析