golang利用pprof与go-torch如何做性能分析

前言

软件开发过程中,项目上线并不是终点。上线后,还要对程序的取样分析运行情况,并重构现有的功能,让程序执行更高效更稳写。 golang的工具包内自带pprof功能,使找出程序中占内存和CPU较多的部分功能方便了不少。加上uber的火焰图,可视化显示,让我们在分析程序时更简单明了。

pprof有两个包用来分析程序一个是net/http/pprof另一个是runtime/pprof,net/http/pprof只是对runtime/pprof包进行封装并用http暴露出来,如下图源码所示:

使用net/http/pprof分析web服务

pprof分析web项目,非常的简单只需要导入包即可。

_ "net/http/pprof"

编写一个小的web服务器

package main

import (
 _ "net/http/pprof"
 "net/http"
 "time"
 "math/rand"
 "fmt"
)

var Count int64 = 0
func main() {
 go calCount()

 http.HandleFunc("/test", test)
 http.HandleFunc("/data", handlerData)

 err := http.ListenAndServe(":9909", nil )
 if err != nil {
 panic(err)
 }
}

func handlerData(w http.ResponseWriter, r *http.Request) {
 qUrl := r.URL
 fmt.Println(qUrl)
 fibRev := Fib()
 var fib uint64
 for i:= 0; i < 5000; i++ {
 fib = fibRev()
 fmt.Println("fib = ", fib)
 }
 str := RandomStr(RandomInt(100, 500))
 str = fmt.Sprintf("Fib = %d; String = %s", fib, str)
 w.Write([]byte(str))
}

func test(w http.ResponseWriter, r *http.Request) {
 fibRev := Fib()
 var fib uint64
 index := Count
 arr := make([]uint64, index)
 var i int64
 for ; i < index; i++ {
 fib = fibRev()
 arr[i] = fib
 fmt.Println("fib = ", fib)
 }
 time.Sleep(time.Millisecond * 500)
 str := fmt.Sprintf("Fib = %v", arr)
 w.Write([]byte(str))
}

func Fib() func() uint64 {
 var x, y uint64 = 0, 1
 return func() uint64 {
 x, y = y, x + y
 return x
 }
}

var letterRunes = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890")
func RandomStr(num int) string {
 seed := time.Now().UnixNano()
 if seed <= 0 {
 seed = time.Now().UnixNano()
 }
 rand.Seed(seed)
 b := make([]rune, num)
 for i := range b {
 b[i] = letterRunes[rand.Intn(len(letterRunes))]
 }
 return string(b)
}

func RandomInt(min, max int) int {
 rand.Seed(time.Now().UnixNano())
 return rand.Intn(max - min + 1) + min
}

func calCount() {
 timeInterval := time.Tick(time.Second)

 for {
 select {
 case i := <- timeInterval:
  Count = int64(i.Second())
 }
 }
}

web服务监听9909端口

web服务器有两个http方法

test: 根据当前的秒数做斐波那契计算

data: 做一个5000的斐波那契计算并返回一个随机的字符串

运行程序,通过访问 http://192.168.3.34:9909/debug/pprof/可以查看web版的profiles相关信息

这几个路径表示的是

/debug/pprof/profile:访问这个链接会自动进行 CPU profiling,持续 30s,并生成一个文件供下载

/debug/pprof/block:Goroutine阻塞事件的记录。默认每发生一次阻塞事件时取样一次。

/debug/pprof/goroutines:活跃Goroutine的信息的记录。仅在获取时取样一次。

/debug/pprof/heap: 堆内存分配情况的记录。默认每分配512K字节时取样一次。

/debug/pprof/mutex: 查看争用互斥锁的持有者。

/debug/pprof/threadcreate: 系统线程创建情况的记录。 仅在获取时取样一次。

除了这些golang为我提供了更多方便的方法,用于分析,下面我们来用命令去访问详细的信息

我们用wrk来访问我们的两个方法,这样我们的服务会处在高速运行状态,取样的结果会更准确

wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/data
wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/test

分析CPU使用情况

使用命令分析CPU使用情况

go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/profile

在默认情况下,Go语言的运行时系统会以100 Hz的的频率对CPU使用情况进行取样。也就是说每秒取样100次,即每10毫秒会取样一次。为什么使用这个频率呢?因为100 Hz既足够产生有用的数据,又不至于让系统产生停顿。并且100这个数上也很容易做换算,比如把总取样计数换算为每秒的取样数。实际上,这里所说的对CPU使用情况的取样就是对当前的Goroutine的堆栈上的程序计数器的取样。

默认的取样时间是30s 你可以通过-seconds 命令来指定取样时间 。取样完成后会进入命令行状态:

可以输入help查看相关的命令.这里说几个常用的命令

top命令,输入top命令默认是返加前10的占用cpu的方法。当然人可以在命令后面加数字指定top数

list命令根据你的正则输出相关的方法.直接跟可选项o 会输出所有的方法。也可以指定方法名

如: handlerData方法占cpu的74.81%

web命令:以网页的形式展现:更直观的显示cpu的使用情况

分析内存使用情况

和分析cpu差不多使用命令

go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/heap

默认情况下取样时只取当前内存使用情况,可以加可选命令alloc_objects,将从程序开始时的内存取样

go tool pprof -alloc_objects httpdemo http://192.168.3.34:9909/debug/pprof/heap

和cpu的命令一样,top list web。不同的是这里显示的是内存使用情况而已。这里我就不演示了。

安装go-torch

还有更方便的工具就是uber的go-torch

安装很简单

go get github.com/uber/go-torch
cd $GOPATH/src/github.com/uber/go-torch
git clone https://github.com/brendangregg/FlameGraph.git

然后运行FlameGraph下的 拷贝flamegraph.pl 到 /usr/local/bin

火焰图分析CPU

使用命令

go-torch -u http://192.168.3.34:9909 --seconds 60 -f cpu.svg

会在当前目录下生成cpu.svg文件,使用浏览器打开

更直观的看到应用程序的问题。handlerData方法占用的cpu时间过长。然后就是去代码里分析并优化了。

火焰图分析内存

使用命令

go-torch http://192.168.3.34:9909/debug/pprof/heap --colors mem -f mem.svg

会在当前目录下生成cpu.svg文件,使用浏览器打开

使用runtime/pprof分析项目

如果你的项目不是web服务,比如是rpc服务等,就要使用runtime/pprof。他提供了很多方法,有时间可以看一下源码

我写了一个简单的工具类。用于调用分析

package profapp

import (
 "os"
 "rrnc_im/lib/zaplogger"
 "go.uber.org/zap"
 "runtime/pprof"
 "runtime"
)

func StartCpuProf() {
 f, err := os.Create("cpu.prof")
 if err != nil {
  zaplogger.Error("create cpu profile file error: ", zap.Error(err))
  return
 }
 if err := pprof.StartCPUProfile(f); err != nil {
  zaplogger.Error("can not start cpu profile, error: ", zap.Error(err))
  f.Close()
 }
}

func StopCpuProf() {
 pprof.StopCPUProfile()
}

//--------Mem
func ProfGc() {
 runtime.GC() // get up-to-date statistics
}

func SaveMemProf() {
 f, err := os.Create("mem.prof")
 if err != nil {
  zaplogger.Error("create mem profile file error: ", zap.Error(err))
  return
 }

 if err := pprof.WriteHeapProfile(f); err != nil {
  zaplogger.Error("could not write memory profile: ", zap.Error(err))
 }
 f.Close()
}

// goroutine block
func SaveBlockProfile() {
 f, err := os.Create("block.prof")
 if err != nil {
  zaplogger.Error("create mem profile file error: ", zap.Error(err))
  return
 }

 if err := pprof.Lookup("block").WriteTo(f, 0); err != nil {
  zaplogger.Error("could not write block profile: ", zap.Error(err))
 }
 f.Close()
}

在需要分析的方法内调用这些方法就可以 比如我是用rpc开放了几个方法

type TestProf struct {

}

func (*TestProf) StartCpuProAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
 profapp.StartCpuProf()
 return nil
}

func (*TestProf) StopCpuProfAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
 profapp.StopCpuProf()
 return nil
}

func (*TestProf) ProfGcAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
 profapp.ProfGc()
 return nil
}

func (*TestProf) SaveMemAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
 profapp.SaveMemProf()
 return nil
}

func (*TestProf) SaveBlockProfileAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
 profapp.SaveBlockProfile()
 return nil
}

调用

profTest.StartCpuProAct(context.TODO(), &im_test.TestRequest{})

 time.Sleep(time.Second * 30)
 profTest.StopCpuProfAct(context.TODO(), &im_test.TestRequest{})

 profTest.SaveMemAct(context.TODO(), &im_test.TestRequest{})
 profTest.SaveBlockProfileAct(context.TODO(), &im_test.TestRequest{})

思想是一样的,会在当前文件夹内导出profile文件。然后用火焰图去分析,就不能指定域名了,要指定文件

 go-torch httpdemo cpu.prof
 go-torch httpdemo mem.prof

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Go程序性能优化及pprof使用方法详解

    Go 程序的性能优化及 pprof 的使用 程序的性能优化无非就是对程序占用资源的优化.对于服务器而言,最重要的两项资源莫过于 CPU 和内存.性能优化,就是在对于不影响程序数据处理能力的情况下,我们通常要求程序的 CPU 的内存占用尽量低.反过来说,也就是当程序 CPU 和内存占用不变的情况下,尽量地提高程序的数据处理能力或者说是吞吐量. Go 的原生工具链中提供了非常多丰富的工具供开发者使用,其中包括 pprof. 对于 pprof 的使用要分成下面两部分来说. Web 程序使用 pprof

  • 深入理解Golang的单元测试和性能测试

    前言 大家做开发的应该都知道,在开发程序中很重要的一点是测试,我们如何保证代码的质量,如何保证每个函数是可运行,运行结果是正确的,又如何保证写出来的代码性能是好的,我们知道单元测试的重点在于发现程序设计或实现的逻辑错误,使问题及早暴露,便于问题的定位解决,而性能测试的重点在于发现程序设计上的一些问题,让线上的程序能够在高并发的情况下还能保持稳定.本小节将带着这一连串的问题来讲解Go语言中如何来实现单元测试和性能测试. go语言中自带有一个轻量级的测试框架testing和自带的go test命令来

  • golang利用pprof与go-torch如何做性能分析

    前言 软件开发过程中,项目上线并不是终点.上线后,还要对程序的取样分析运行情况,并重构现有的功能,让程序执行更高效更稳写. golang的工具包内自带pprof功能,使找出程序中占内存和CPU较多的部分功能方便了不少.加上uber的火焰图,可视化显示,让我们在分析程序时更简单明了. pprof有两个包用来分析程序一个是net/http/pprof另一个是runtime/pprof,net/http/pprof只是对runtime/pprof包进行封装并用http暴露出来,如下图源码所示: 使用n

  • Golang利用位运算实现为程序加速

    目录 前言 用位运算优化 其他奇淫巧技 总结 前言 最近在持续优化之前编写的 JSON 解析库 xjson,主要是两个方面的优化. 第一个是支持将一个 JSONObject 对象输出为 JSON 字符串. 这点在上个版本中只是利用自带的 Print 函数打印数据: func TestJson4(t *testing.T) { str := `{"people":{"name":{"first":"bob"}}}` first

  • 利用MySQL系统数据库做性能负载诊断的方法

    某大师曾说过,像了解自己的老婆 一样了解自己管理的数据库,个人认为包含了两个方面的了解: 1,在稳定性层面来说,更多的是关注高可用.读写分离.负载均衡,灾备管理等等high level层面的措施(就好比要保证生活的稳定性) 2,在实例级别的来说,需要关注内存.IO.网络,热点表,热点索引,top sql,死锁,阻塞,历史上执行异常的SQL(好比生活品质细节)MySQL的performance_data库和sys库提供了非常丰富的系统日志数据,可以帮助我们更好地了解非常细节的,这里简单地列举出来了

  • 关于golang利用channel和goroutine完成统计素数的思路

    1. 需求 要求统计1-200000的数字中,哪些是素数?这个问题在本章开篇就提出来了,可以使用goroutine和channel来完成 2.分析思路 传统的方法,就是使用一个循环,循环的判断各个数是不是素数[ok] 使用并发/并行的方式,将统计素数的任务分配给多个(x个)goroutine去完成,完成任务时间短 分析思路图:  代码实现: package main import ( "fmt" "time" ) // 需求: // 要求统计1-200000的数字,

  • Golang 利用反射对结构体优雅排序的操作方法

    最近开始实习,工作技术栈主要Python和Golang,目前的任务把Python模块重构为GO模块,然后出现了一个问题,就是要将一个结构体按结构体中各个字段进行排序,然后写入Redis,对于Pyhon来说for循环就能解决,但是对于Go语言来说,每一次排序都要写一个比较函数,写出来的代码太丑,非常长,代码结构是一致,只是比较字段不一样而已,个人无法接受啊,网上搜索也没搜索到合适解决方法,所以自己想了一个解决方法来优雅排序. 比较函数: func reflectCmp(i, j interface

  • Go pprof内存指标含义备忘录及案例分析

    最近组内一些Go服务碰到内存相关的问题,所以今天抽时间看了下Go pprof内存指标的含义,为后续查问题做准备. 内容主要来自于Go代码中对这些字段的注释,加自己的理解.理解不对的地方欢迎指正. // https://github.com/golang/go/blob/master/src/runtime/mstats.go#L150 // 总共从OS申请的字节数 // 是下面各种XxxSys指标的总和.包含运行时的heap.stack和其他内部数据结构的总和. // 它是虚拟内存空间.不一定全

  • Python利用PyExecJS库执行JS函数的案例分析

      在Web渗透流程的暴力登录场景和爬虫抓取场景中,经常会遇到一些登录表单用DES之类的加密方式来加密参数,也就是说,你不搞定这些前端加密,你的编写的脚本是不可能Login成功的.针对这个问题,现在有三种解决方式: ①看懂前端的加密流程,然后用脚本编写这些方法(或者找开源的源码),模拟这个加密的流程.缺点是:不懂JS的话,看懂的成本就比较高了: ②selenium + Chrome Headless.缺点是:因为是模拟点击,所以效率相对①.③低一些: ③使用语言调用JS引擎来执行JS函数.缺点是

  • 利用 Chrome Dev Tools 进行页面性能分析的步骤说明(前端性能优化)

    背景 我们经常使用 Chrome Dev Tools 来开发调试,但是很少知道怎么利用它来分析页面性能,这篇文章,我将详细说明怎样利用 Chrome Dev Tools 进行页面性能分析及性能报告数据如何解读. 分析面板介绍 上图是 Chrome Dev Tools 的一个截图,其中,我认为能用于进行页面性能快速分析的主要是图中圈出来的几个模块功能,这里简单介绍一下: Network : 页面中各种资源请求的情况,这里能看到资源的名称.状态.使用的协议(http1/http2/quic...).

  • Go 库性能分析工具pprof

    目录 场景 pprof 生成 profile 文件 CPU 性能分析 内存性能分析 分析 profile 文件 && 优化代码 go tool pprof top 命令 list 命令 总结 场景 我们一般没必要过度优化 Go 程序性能.但是真正需要时,Go 提供的 pprof 工具能帮我们快速定位到问题.比如,我们团队之前有一个服务,在本地和测试环境没问题,一到灰度环境,就报 cpu 负载过高,后经排查,发现某处代码死循环了.我把代码简化成如下: // 处理某些业务,真实的代码中这个死循

  • go性能分析工具pprof的用途及使用详解

    目录 pprof的用途 利用runtime/pprof包实现cpu分析的步骤 利用runtime/pprof包实现内存分析的步骤: 利用net/http/pprof包进行性能分析 总结 pprof的用途 CPU Profiling:CPU 分析,按照一定的频率采集所监听的应用程序 CPU(含寄存器)的使用情况,可确定应用程序在主动消耗CPU 周期时花费时间的位置 Memory Profiling:内存分析,在应用程序进行堆分配时记录堆栈跟踪,用于监视当前和历史内存使用情况,以及检查内存泄漏 Bl

随机推荐