python并发编程 Process对象的其他属性方法join方法详解

一 Process对象的join方法

在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况

情况一:

在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源。 这种是没有join方法

情况二:

如果主进程的任务在执行到某一个阶段时,需要等待子进程执行完毕后才能继续执行,

就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是join方法的作用

让主进程等着,所有子进程执行完毕后,主进程才继续执行

from multiprocessing import Process
import time
import os
def task():
  print("%s is running,parent id is <%s>" % (os.getpid(), os.getppid()))
  time.sleep(3)
  print("%s is done,parent id is <%s>" % (os.getpid(), os.getppid()))
if __name__ == "__main__":
  t = Process(target=task, )
  t.start()
  t.join()
  # 主进程 等子进程执行完了
  print("主", os.getpid(), os.getppid())
'''
is running,parent id is <25956>
is done,parent id is <25956>
主 25956 2992
'''

子进程运行完,最后打印主进程,主进程结束了 所有僵尸进程都会回收

开启多个字进程 向操作系统发送信号,但操作系统要处理的任务太多了,先开启 哪个子进程是随机的,有时候可能先开启主进程先,

操作系统什么时候开,开多长时间,我们是不知道的

from multiprocessing import Process
import time
import os
def task(name):
  print('%s is running' %name)
  time.sleep(2)
  print('%s is end' %name)
if __name__ == '__main__':
  p1 = Process(target=task, args=('子进程1',))
  p2 = Process(target=task, args=('子进程2',))
  p3 = Process(target=task, args=('子进程3',))
  p4 = Process(target=task, args=('子进程4',))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  print('主',os.getpid(),os.getppid())
'''
子进程1 is running
子进程2 is running
主 9268 5236
子进程3 is running
子进程4 is running
子进程1 is end
子进程2 is end
子进程3 is end
子进程4 is end

'''

也有可能这样,先开启主进程,

主 9556 5236
子进程1 is running
子进程3 is running
子进程2 is running
子进程4 is running
子进程1 is end
子进程3 is end
子进程2 is end
子进程4 is end

p.start() 只是给操作系统发送信号

join 会变串行?

既然join是等待进程结束, 那么我像下面这样写, 进程不就又变成串行的了吗?
当然不是了, 必须明确:p.join()是让谁等?
很明显p.join()是让主线程等待p 子进程的结束,卡住的是主进程而绝非 子进程p,

from multiprocessing import Process
import time
import os
def task(name):
  print('%s is running' %(name))
  time.sleep(2)
  print('%s is end' %(name))
if __name__ == '__main__':
  p1 = Process(target=task, args=('子进程1',))
  p2 = Process(target=task, args=('子进程2',))
  p3 = Process(target=task, args=('子进程3',))
  p4 = Process(target=task, args=('子进程4',))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  p1.join()
  p2.join()
  p3.join()
  p4.join()
  print('主',os.getpid(),os.getppid())

详细解析如下:

进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了

而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键

join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待

所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间

所以不会是串行执行,是并发执行

4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间

所以就是5秒,就是子进程1 那个等待的时间

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  p1.join()
  p2.join()
  p3.join()
  p4.join()
  print('主',time.time() - start)
'''
子进程1 is running
子进程2 is running
子进程3 is running
子进程4 is running
子进程2 is end
子进程3 is end
子进程4 is end
子进程1 is end
主 5.413309812545776
'''

这种方式就是串行

等子进程1执行时候,子进程2就没有发送信号,要等子进程1 执行完,再子进程2发送信号 ,开启子进程2再执行,按照这样的顺序

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  p1.start()
  p1.join()
  p2.start()
  p2.join()
  p3.start()
  p3.join()
  p4.start()
  p4.join()
  print('主',time.time() - start)
'''
子进程1 is running
子进程1 is end
子进程2 is running
子进程2 is end
子进程3 is running
子进程3 is end
子进程4 is running
子进程4 is end
主 12.212698698043823

'''

上述启动进程与 join进程 可以简写为以下

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  process_list = [p1,p2,p3,p4]
  for p in process_list:
    p.start()
  for p in process_list:
    p.join()
  print('主',time.time() - start)

join 保证所有子进程执行完 主进程才能工作,不然一直阻塞

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python多进程并发与多线程并发编程实例总结

    本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

  • 理论讲解python多进程并发编程

    一.什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 二.进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三.并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是'同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务. 并行就相当于有好多台设备,可以同时供好多人使用. 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人. 所以只有多个cpu才能实现并行,而一个c

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • Python并发之多进程的方法实例代码

    一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

  • python并发编程 Process对象的其他属性方法join方法详解

    一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源. 这种是没有join方法 情况二: 如果主进程的任务在执行到某一个阶段时,需要等待子进程执行完毕后才能继续执行, 就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是

  • Java编程实现对象克隆(复制)代码详解

    克隆,想必大家都有耳闻,世界上第一只克隆羊多莉就是利用细胞核移植技术将哺乳动物的成年体细胞培育出新个体,甚为神奇.其实在Java中也存在克隆的概念,即实现对象的复制. 本文将尝试介绍一些关于Java中的克隆和一些深入的问题,希望可以帮助大家更好地了解克隆. 假如说你想复制一个简单变量.很简单: int apples = 5; int pears = apples; 不仅仅是int类型,其它七种原始数据类型(boolean,char,byte,short,float,double.long)同样适

  • java并发编程关键字volatile保证可见性不保证原子性详解

    目录 关于可见性 关于指令重排 volatile关键字可以说是Java虚拟机提供的最轻量级的同步机制,但对于为什么它只能保证可见性,不保证原子性,它又是如何禁用指令重排的,还有很多同学没彻底理解 相信我,坚持看完这篇文章,你将牢牢掌握一个Java核心知识点 先说它的两个作用: 保证变量在内存中对线程的可见性禁用指令重排 每个字都认识,凑在一起就麻了 这两个作用通常很不容易被我们Java开发人员正确.完整地理解,以至于许多同学不能正确地使用volatile 关于可见性 不多bb,码来 public

  • 详解Python并发编程之创建多线程的几种方法

    大家好,并发编程 今天开始进入第二篇. 今天的内容会比较基础,主要是为了让新手也能无障碍地阅读,所以还是要再巩固下基础.学完了基础,你们也就能很顺畅地跟着我的思路理解以后的文章. 本文目录 学会使用函数创建多线程 学会使用类创建多线程 多线程:必学函数讲解 经过总结,Python创建多线程主要有如下两种方法: 函数 类 接下来,我们就来揭开多线程的神秘面纱. . 学会使用函数创建多线程 在Python3中,Python提供了一个内置模块 threading.Thread,可以很方便地让我们创建多

  • Python GUI编程学习笔记之tkinter事件绑定操作详解

    本文实例讲述了Python GUI编程学习笔记之tkinter事件绑定操作.分享给大家供大家参考,具体如下: 相关内容: command bind protocol 首发时间:2018-03-04 19:26 command: command是控件中的一个参数,如果使得command=函数,那么点击控件的时候将会触发函数 能够定义command的常见控件有: Button.Menu- 调用函数时,默认是没有参数传入的,如果要强制传入参数,可以考虑使用lambda from tkinter imp

  • Python GUI编程学习笔记之tkinter界面布局显示详解

    本文实例讲述了Python GUI编程学习笔记之tkinter界面布局显示.分享给大家供大家参考,具体如下: 相关内容: pack 介绍 常用参数 使用情况 常用函数 grid 介绍 常用参数 使用情况 常用函数 place 介绍 常用参数 使用情况 常用函数 首发时间:2018-03-04 14:20 pack: 介绍: pack几何管理器按行或列打包小部件. 可以使用填充fill,展开expand和靠边side等选项来控制此几何体管理器. pack的排放控件的形式就像将一个个控件按大小从上到

  • python网络编程socket实现服务端、客户端操作详解

    本文实例讲述了python网络编程socket实现服务端.客户端操作.分享给大家供大家参考,具体如下: 本文内容: socket介绍 TCP: 服务端 客户端 UDP: 服务端 客户端 首发时间:2018-02-08 01:14 修改: 2018-03-20 :重置了布局,增加了UDP 什么是socket: socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求. 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为

  • Java并发编程包中atomic的实现原理示例详解

    线程安全: 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么就称这个类时线程安全的. 线程安全主要体现在以下三个方面: 原子性:提供了互斥访问,同一时刻只能有一个线程对它进行操作 可见性:一个线程对主内存的修改可以及时的被其他线程观察到 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序 引子 在多线程的场景中,我们需要保证数据安全,就会考虑同步的

  • python网络编程 使用UDP、TCP协议收发信息详解

    UDP UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实现广播发送. UDP传输数据时有大小限制,每个被传输的数据报必须限定在64KB之内. UDP是一个不可靠的协议,发送方所发送的数据报并不一定以相同的次序到达接收方. udp通信模型中,在通信开始之前,不需要建立相关的链接,只需要发送数据即可,类似于生活中,"写信". 客户端: from socket import socket,AF_INET,SOCK_DGRAM # 创建套接字

  • 深入了解Python并发编程

    目录 并发方式 线程([Thread]) 进程 (Process) 远程分布式主机 (Distributed Node) 伪线程 (Pseudo-Thread) 实战运用 计算密集型 IO密集型 总结 并发方式 线程([Thread]) 多线程几乎是每一个程序猿在使用每一种语言时都会首先想到用于解决并发的工具(JS程序员请回避),使用多线程可以有效的利用CPU资源(Python例外).然而多线程所带来的程序的复杂度也不可避免,尤其是对竞争资源的同步问题. 然而在python中由于使用了全局解释锁

随机推荐