OpenCV图像分割中的分水岭算法原理与应用详解

图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一。目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图像,模式识别等领域得到了广泛的应用。

1.传统分水岭算法基本原理

分水岭比较经典的计算方法是L.Vincent于1991年在PAMI上提出的[1]。传统的分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆地,而集水盆地的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸人水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝如下图所示,即形成分水岭。

传统分水岭算法示意图

然而基于梯度图像的直接分水岭算法容易导致图像的过分割,产生这一现象的原因主要是由于输入的图像存在过多的极小区域而产生许多小的集水盆地,从而导致分割后的图像不能将图像中有意义的区域表示出来。所以必须对分割结果的相似区域进行合并。
[1]L.Vincent, P Soille. Watersheds in digital space: An efficientalgorithms based on immersion simulation[J]. IEEE Trans. on Pattern Analysisand Machine Intelligence, 1991, 13(6): 583-598.

2.改进的分水岭算法基本原理

因为传统分水岭算法存在过分割的不足,OpenCV提供了一种改进的分水岭算法,使用一系列预定义标记来引导图像分割的定义方式。使用OpenCV的分水岭算法cv::wathershed,需要输入一个标记图像,图像的像素值为32位有符号正数(CV_32S类型),每个非零像素代表一个标签。它的原理是对图像中部分像素做标记,表明它的所属区域是已知的。分水岭算法可以根据这个初始标签确定其他像素所属的区域。传统的基于梯度的分水岭算法和改进后基于标记的分水岭算法示意图如下图所示。

传统基于梯度的分水岭算法和基于标记的分水岭算法原理图

从上图可以看出,传统基于梯度的分水岭算法由于局部最小值过多造成分割后的分水岭较多。而基于标记的分水岭算法,水淹过程从预先定义好的标记图像(像素)开始,较好的克服了过度分割的不足。本质上讲,基于标记点的改进算法是利用先验知识来帮助分割的一种方法。因此,改进算法的关键在于如何获得准确的标记图像,即如何将前景物体与背景准确的标记出来。

3.基于标记点的分水岭算法应用

基于标记点的分水岭算法应用步骤

● 封装分水岭算法类

● 获取标记图像

获取前景像素,并用255标记前景

获取背景像素,并用128标记背景,未知像素,使用0标记

合成标记图像

● 将原图和标记图像输入分水岭算法

● 显示结果

(1)封装分水岭算法类

将分水岭算法cv::watershed(image,markers)封装进类WatershedSegmenter,并保存为头文件以便于操作。(本段封装代码参考《OpenCV计算机视觉编程攻略(第二版)》)

#if !defined WATERSHS
#define WATERSHS 

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp> 

class WatershedSegmenter { 

 private: 

   cv::Mat markers; 

 public: 

   void setMarkers(const cv::Mat& markerImage) { 

    // Convert to image of ints
    markerImage.convertTo(markers,CV_32S);
   } 

   cv::Mat process(const cv::Mat &image) { 

    // Apply watershed
    cv::watershed(image,markers); 

    return markers;
   } 

   // Return result in the form of an image
   cv::Mat getSegmentation() { 

    cv::Mat tmp;
    // all segment with label higher than 255
    // will be assigned value 255
    markers.convertTo(tmp,CV_8U); 

    return tmp;
   } 

   // Return watershed in the form of an image以图像的形式返回分水岭
   cv::Mat getWatersheds() { 

    cv::Mat tmp;
    //在变换前,把每个像素p转换为255p+255(在conertTo中实现)
    markers.convertTo(tmp,CV_8U,255,255); 

    return tmp;
   }
};
#endif

(2)获取标记图像

标记前景

读取原图

// Read input image
  cv::Mat image1= cv::imread("image.jpg");
  if (!image1.data)
    return 0;
// Display the color image
  cv::resize(image1, image1, cv::Size(), 0.7, 0.7);
  cv::namedWindow("Original Image1");
  cv::imshow("Original Image1",image1);

原图

以下代码目的是获取前景物体的像素,并用255标记。这里使用阈值分割初步分割前景和背景,接着使用形态学闭运算连接二值图像中前景的各个部分,并平滑边缘。如何更好的获取前景像素,需要根据实际图像的情况灵活处理。

// Identify image pixels with object 

  Mat binary;
  cv::cvtColor(image1,binary,COLOR_BGRA2GRAY);
  cv::threshold(binary,binary,30,255,THRESH_BINARY_INV);//阈值分割原图的灰度图,获得二值图像
  // Display the binary image
  cv::namedWindow("binary Image1");
  cv::imshow("binary Image1",binary);
  waitKey(); 

  // CLOSE operation
  cv::Mat element5(5,5,CV_8U,cv::Scalar(1));//5*5正方形,8位uchar型,全1结构元素
  cv::Mat fg1;
  cv::morphologyEx(binary, fg1,cv::MORPH_CLOSE,element5,Point(-1,-1),1);// 闭运算填充物体内细小空洞、连接邻近物体 

  // Display the foreground image
  cv::namedWindow("Foreground Image");
  cv::imshow("Foreground Image",fg1);
  waitKey();

阈值分割原图像的灰度图

闭运算获取前景

标记背景和未知区域

在上面阈值分割得到的二值图像binary的基础上,通过对白色前景的深度膨胀运算获得一个超过前景实际大小的物体,紧接着用反向阈值将深度膨胀后的图像中的黑色部分转换成128,即完成了对背景像素的标记。实际上,在0~255范围内,任意不为0或255的值均可作为背景的标记。当然如果有其他类型的物体,可以使用另外一个数值作为其标记。也就是说,多个目标可以有多个标记来帮助分水岭算法正确分割图像。

// Identify image pixels without objects 

  cv::Mat bg1;
  cv::dilate(binary,bg1,cv::Mat(),cv::Point(-1,-1),4);//膨胀4次,锚点为结构元素中心点
  cv::threshold(bg1,bg1,1,128,cv::THRESH_BINARY_INV);//>=1的像素设置为128(即背景)
  // Display the background image
  cv::namedWindow("Background Image");
  cv::imshow("Background Image",bg1);
  waitKey();

将背景设置为128,未知区域设置为0

合成标记图像

将前景、背景及未知区域合成为一个标记图像。则标记图像中通过255标记前景物体,通过128标记背景,通过0标记未知区域。

//Get markers image 

  Mat markers1 = fg1 + bg1; //使用Mat类的重载运算符+来合并图像。
  cv::namedWindow("markers Image");
  cv::imshow("markers Image",markers1);
  waitKey();

标记图像

(3)分水岭算法分割图像

将标记图像和原图输入分水岭算法封装的类WatershedSegmenter,执行分水岭算法,并显示算法运行的结果。

// Apply watershed segmentation 

  WatershedSegmenter segmenter1; //实例化一个分水岭分割方法的对象
  segmenter1.setMarkers(markers1);//设置算法的标记图像,使得水淹过程从这组预先定义好的标记像素开始
  segmenter1.process(image1);   //传入待分割原图 

  // Display segmentation result
  cv::namedWindow("Segmentation1");
  cv::imshow("Segmentation1",segmenter1.getSegmentation());//将修改后的标记图markers转换为可显示的8位灰度图并返回分割结果(白色为前景,灰色为背景,0为边缘)
  waitKey();
    // Display watersheds
  cv::namedWindow("Watersheds1");
  cv::imshow("Watersheds1",segmenter1.getWatersheds());//以图像的形式返回分水岭(分割线条)
  waitKey();

代码segmenter1.process(image)将修改标记图像markers,每个值为0的像素都会被赋予一个输入标签,而边缘处的像素赋值为-1,得到的标签图像如下图所示。

显示分水岭分割图像

分水岭分割线显示

(4)显示结果图像

本步骤的目的是将前景物体的分割结果在黑/白底色中显示出来。背景颜色由黑转白时使用了Mat矩阵扫描的.ptr方法与指针运算。

// Get the masked image
  Mat maskimage = segmenter1.getSegmentation();
  cv::threshold(maskimage,maskimage,250,1,THRESH_BINARY);
  cv::cvtColor(maskimage,maskimage,COLOR_GRAY2BGR); 

  maskimage = image1.mul(maskimage);
  cv::namedWindow("maskimage");
  cv::imshow("maskimage",maskimage);
  waitKey(); 

  // Turn background (0) to white (255)
  int nl= maskimage.rows; // number of lines
  int nc= maskimage.cols * maskimage.channels(); // total number of elements per line 

  for (int j=0; j<nl; j++) {
     uchar* data= maskimage.ptr<uchar>(j);
    for (int i=0; i<nc; i++)
    {
      // process each pixel ---------------------
      if (*data==0) //将背景由黑色改为白色显示
        *data=255;
      data++;//指针操作:如为uchar型指针则移动1个字节,即移动到下1列
    }
   }
  cv::namedWindow("result");
  cv::imshow("result",maskimage);
  waitKey();

原图的前景分割图(黑色背景)

原图的前景分割图(白色背景)

从上图的分割结果可以看出,基于标记图像的分水岭算法较好的实现了复杂背景下前景目标分割。算法应用的关键步骤为标记图像的获取,目前很多文献提出了各类获取标记图像的方法,如何使用还需要根据所处理的图像来量身确定。

贴出实验原始图像:)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv之分水岭算法示例

    本文介绍了python opencv之分水岭算法示例,分享给大家,具体如下: 目标 使用分水岭算法对基于标记的图像进行分割 使用函数cv2.watershed() 原理: 灰度图像可以被看成拓扑平面,灰度值高的区域可以看出山峰,灰度值低的区域可以看成是山谷.向每一个山谷当中灌不同颜色的水.水位升高,不同山谷的水会汇合,为防止不同山谷的水汇合,小在汇合处建立起堤坝.然后继续灌水,然后再建立堤坝,直到山峰都掩模.构建好的堤坝就是图像的分割. 此方法通常会得到过渡分割的结果,因为图像中的噪声以及其他因

  • Opencv分水岭算法学习

    分水岭算法可以将图像中的边缘转化成"山脉",将均匀区域转化为"山谷",这样有助于分割目标. 分水岭算法是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中的每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭.分水岭的概念和形成可以通过模拟浸入过程来说明:在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响区域慢慢向外扩展,

  • Opencv实现用于图像分割分水岭算法

    目标 • 使用分水岭算法基于掩模的图像分割 • 学习函数: cv2.watershed() 原理   任何一幅灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷.我们向每一个山谷中灌不同颜色的水,随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝.不停的灌水,不停的构建堤坝直到所有的山峰都被水淹没.我们构建好的堤坝就是对图像的分割.这就是分水岭算法的背后哲理.   但是这种方法通常都会得到过度分割的结果

  • OpenCV图像分割中的分水岭算法原理与应用详解

    图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一.目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图像,模式识别等领域得到了广泛的应用. 1.传统分水岭算法基本原理 分水岭比较经典的计算方法是L.Vincent于1991年在PAMI上提出的[1].传统的分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一像素的灰度值表示该点的海

  • JAVA 中解密RSA算法JS加密实例详解

    JAVA 中解密RSA算法JS加密实例详解 有这样一个需求,前端登录的用户名密码,密码必需加密,但不可使用MD5,因为后台要检测密码的复杂度,那么在保证安全的前提下将密码传到后台呢,答案就是使用RSA非对称加密算法解决 . java代码 需要依赖 commons-codec 包 RSACoder.Java import org.apache.commons.codec.binary.Base64; import javax.crypto.Cipher; import java.security.

  • JavaScript中new操作符的原理与实现详解

    目录 一.new做了哪些事 二.返回不同类型时有哪些表现 三.手写new的实现原理 一.new做了哪些事 先看看new的使用场景: // 1.创建一个构造函数 function Vehicle(name, price) { this.name = name this.price = price } ​ // 2.new一个实例对象 let truck = new Vehicle() console.log(truck); //Vehicle { name: undefined, price: u

  • python中模块查找的原理与方法详解

    前言 本文主要给大家介绍了关于python模块查找的原理与方式,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍: 基础概念 module 模块, 一个 py 文件或以其他文件形式存在的可被导入的就是一个模块 package 包,包含有 __init__ 文件的文件夹 relative path 相对路径,相对于某个目录的路径 absolute path 绝对路径,全路径 路径查找 python 解释器查找被引入的包或模块 Python 解释器是如何查找包和模块的 Python 执行一

  • Java中Prime算法的原理与实现详解

    目录 Prim算法介绍 1.点睛 2.算法介绍 3. 算法步骤 4.图解 Prime 算法实现 1.构建后的图 2.代码 3.测试 Prim算法介绍 1.点睛 在生成树的过程中,把已经在生成树中的节点看作一个集合,把剩下的节点看作另外一个集合,从连接两个集合的边中选择一条权值最小的边即可. 2.算法介绍 首先任选一个节点,例如节点1,把它放在集合 U 中,U={1},那么剩下的节点为 V-U={2,3,4,5,6,7},集合 V 是图的所有节点集合. 现在只需要看看连接两个集合(U 和 V-U)

  • Matlab中图像数字水印算法的原理与实现详解

    目录 一.背景意义 二.基本原理 三.算法介绍 3.1 数字水印嵌入 3.2 数字水印提取 四.程序实现 一.背景意义 数字水印技术作为信息隐藏技术的一个重要分支,是将信息(水印)隐藏于数字图像.视频.音频及文本文档等数字媒体中,从而实现隐秘传输.存储.标注.身份识别.版权保护和防篡改等目的. 随着 1996 年第一届信息隐藏国际学术研讨会的召开,数字水印技术的研究得到了迅速的发展,不少政府机构和研究部门加大了对其的研究力度,其中包括美国财政部.美国版权工作组.美国洛斯阿莫斯国家实验室.美国海陆

  • 基数排序算法的原理与实现详解(Java/Go/Python/JS/C)

    目录 说明 实现过程 示意图 性能分析 代码 Java Python Go JS TS C C++ 链接 说明 基数排序(RadixSort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较.由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数.基数排序的发明可以追溯到1887年赫尔曼·何乐礼在列表机(Tabulation Machine)上的 基数排序的方式可以采用LSD(Least significant di

  • JS中数据结构与算法---排序算法(Sort Algorithm)实例详解

    排序算法的介绍 排序也称排序算法 (Sort Algorithm),排序是将 一组数据 , 依指定的顺序 进行 排列的过程 . 排序的分类 1)  内部排序 : 指将需要处理的所有数据都加载 到 内部存储器(内存) 中进行排序. 2) 外部排序法: 数据量过大,无法全部加载到内 存中,需要借助 外部存储(文件等) 进行 排序. 常见的排序算法分类 算法的时间复杂度 度量一个程序(算法)执行时间的两种方法 1.事后统计的方法 这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,

  • java中Servlet监听器的工作原理及示例详解

    监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听另一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 监听器原理 监听原理 1.存在事件源 2.提供监听器 3.为事件源注册监听器 4.操作事件源,产生事件对象,将事件对象传递给监听器,并且执行监听器相应监听方法 监听器典型案例:监听window窗口的事件监听器 例如:swing开发首先制造Frame**窗体**,窗体本身也是一个显示空间,对窗体提供监听器,监听窗体方法调用或者属性改变:

  • Java中读写锁ReadWriteLock的原理与应用详解

    目录 什么是读写锁? 为什么需要读写锁? 读写锁的特点 读写锁的使用场景 读写锁的主要成员和结构图 读写锁的实现原理 读写锁总结 Java并发编程提供了读写锁,主要用于读多写少的场景,今天我就重点来讲解读写锁的底层实现原理 什么是读写锁? 读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的. 所谓的读

随机推荐