浅谈Spring @Async异步线程池用法总结

本文介绍了Spring @Async异步线程池用法总结,分享给大家,希望对大家有帮助

1. TaskExecutor

spring异步线程池的接口类,其实质是Java.util.concurrent.Executor

Spring 已经实现的异常线程池:

1. SimpleAsyncTaskExecutor:不是真的线程池,这个类不重用线程,每次调用都会创建一个新的线程。
2. SyncTaskExecutor:这个类没有实现异步调用,只是一个同步操作。只适用于不需要多线程的地方
3. ConcurrentTaskExecutor:Executor的适配类,不推荐使用。如果ThreadPoolTaskExecutor不满足要求时,才用考虑使用这个类
4. SimpleThreadPoolTaskExecutor:是Quartz的SimpleThreadPool的类。线程池同时被quartz和非quartz使用,才需要使用此类
5. ThreadPoolTaskExecutor :最常使用,推荐。 其实质是对java.util.concurrent.ThreadPoolExecutor的包装

2. @Async

spring对过@Async定义异步任务

异步的方法有3种

1. 最简单的异步调用,返回值为void
2. 带参数的异步调用 异步方法可以传入参数
3. 异常调用返回Future

详细见代码:

@Component
public class AsyncDemo {
  private static final Logger log = LoggerFactory.getLogger(AsyncDemo.class);

  /**
   * 最简单的异步调用,返回值为void
   */
  @Async
  public void asyncInvokeSimplest() {
    log.info("asyncSimplest");
  }

  /**
   * 带参数的异步调用 异步方法可以传入参数
   *
   * @param s
   */
  @Async
  public void asyncInvokeWithParameter(String s) {
    log.info("asyncInvokeWithParameter, parementer={}", s);
  }

  /**
   * 异常调用返回Future
   *
   * @param i
   * @return
   */
  @Async
  public Future<String> asyncInvokeReturnFuture(int i) {
    log.info("asyncInvokeReturnFuture, parementer={}", i);
    Future<String> future;
    try {
      Thread.sleep(1000 * 1);
      future = new AsyncResult<String>("success:" + i);
    } catch (InterruptedException e) {
      future = new AsyncResult<String>("error");
    }
    return future;
  }

}

以上的异步方法和普通的方法调用相同

asyncDemo.asyncInvokeSimplest();
asyncDemo.asyncInvokeWithException("test");
Future<String> future = asyncDemo.asyncInvokeReturnFuture(100);
System.out.println(future.get());

3. Spring 开启异步配置

Spring有两种方法启动配置

1. 注解
2. XML

3.1 通过注解实现

要启动异常方法还需要以下配置

1. @EnableAsync 此注解开户异步调用功能

2. public AsyncTaskExecutor taskExecutor() 方法自定义自己的线程池,线程池前缀”Anno-Executor”。如果不定义,则使用系统默认的线程池。

@SpringBootApplication
@EnableAsync // 启动异步调用
public class AsyncApplicationWithAnnotation {
  private static final Logger log = LoggerFactory.getLogger(AsyncApplicationWithAnnotation.class);

  /**
   * 自定义异步线程池
   * @return
   */
  @Bean
  public AsyncTaskExecutor taskExecutor() {
    ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
    executor.setThreadNamePrefix("Anno-Executor");
    executor.setMaxPoolSize(10); 

    // 设置拒绝策略
    executor.setRejectedExecutionHandler(new RejectedExecutionHandler() {
      @Override
      public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
        // .....
      }
    });
    // 使用预定义的异常处理类
    // executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

    return executor;
  } 

  public static void main(String[] args) {
    log.info("Start AsyncApplication.. ");
    SpringApplication.run(AsyncApplicationWithAnnotation.class, args);
  }
}

以上的异常方法和普通的方法调用相同

@RunWith(SpringRunner.class)
@SpringBootTest(classes=AsyncApplicationWithAnnotation.class)
public class AsyncApplicationWithAnnotationTests {
  @Autowired
  private AsyncDemo asyncDemo;

  @Test
  public void contextLoads() throws InterruptedException, ExecutionException {
    asyncDemo.asyncInvokeSimplest();
    asyncDemo.asyncInvokeWithParameter("test");
    Future<String> future = asyncDemo.asyncInvokeReturnFuture(100);
    System.out.println(future.get());
  }
}

执行测试用例,输出内容如下:

可以看出主线程的名称为main; 异步方法则使用 Anno-Executor1,可见异常线程池起作用了

2017-03-28 20:00:07.731 INFO 5144 --- [ Anno-Executor1] c.hry.spring.async.annotation.AsyncDemo : asyncSimplest
2017-03-28 20:00:07.732 INFO 5144 --- [ Anno-Executor1] c.hry.spring.async.annotation.AsyncDemo : asyncInvokeWithParameter, parementer=test
2017-03-28 20:00:07.751 INFO 5144 --- [ Anno-Executor1] c.hry.spring.async.annotation.AsyncDemo : asyncInvokeReturnFuture, parementer=100
success:100
2017-03-28 20:00:08.757 INFO 5144 --- [    Thread-2] s.c.a.AnnotationConfigApplicationContext : Closing org.springframework.context.annotation.AnnotationConfigApplicationContext@47af7f3d: startup date [Tue Mar 28 20:00:06 CST 2017]; root of context hierarchy

3.2 通过XML实现

Bean文件配置: spring_async.xml

1. 线程的前缀为xmlExecutor
2. 启动异步线程池配置

  <!-- 等价于 @EnableAsync, executor指定线程池 -->
  <task:annotation-driven executor="xmlExecutor"/>
  <!-- id指定线程池产生线程名称的前缀 -->
  <task:executor
    id="xmlExecutor"
    pool-size="5-25"
    queue-capacity="100"
    keep-alive="120"
    rejection-policy="CALLER_RUNS"/>

线程池参数说明

1. ‘id' : 线程的名称的前缀

2. ‘pool-size':线程池的大小。支持范围”min-max”和固定值(此时线程池core和max sizes相同)

3. ‘queue-capacity' :排队队列长度

○ The main idea is that when a task is submitted, the executor will first try to use a free thread if the number of active threads is currently less than the core size.
○ If the core size has been reached, then the task will be added to the queue as long as its capacity has not yet been reached.
○ Only then, if the queue's capacity has been reached, will the executor create a new thread beyond the core size.
○ If the max size has also been reached, then the executor will reject the task.
○ By default, the queue is unbounded, but this is rarely the desired configuration because it can lead to OutOfMemoryErrors if enough tasks are added to that queue while all pool threads are busy.

4. ‘rejection-policy': 对拒绝的任务处理策略

○ In the default ThreadPoolExecutor.AbortPolicy, the handler throws a runtime RejectedExecutionException upon rejection.
○ In ThreadPoolExecutor.CallerRunsPolicy, the thread that invokes execute itself runs the task. This provides a simple feedback control mechanism that will slow down the rate that new tasks are submitted.
○ In ThreadPoolExecutor.DiscardPolicy, a task that cannot be executed is simply dropped.
○ In ThreadPoolExecutor.DiscardOldestPolicy, if the executor is not shut down, the task at the head of the work queue is dropped, and then execution is retried (which can fail again, causing this to be repeated.)

5. ‘keep-alive' : 线程保活时间(单位秒)

setting determines the time limit (in seconds) for which threads may remain idle before being terminated. If there are more than the core number of threads currently in the pool, after waiting this amount of time without processing a task, excess threads will get terminated. A time value of zero will cause excess threads to terminate immediately after executing a task without remaining follow-up work in the task queue()

异步线程池

@SpringBootApplication
@ImportResource("classpath:/async/spring_async.xml")
public class AsyncApplicationWithXML {
  private static final Logger log = LoggerFactory.getLogger(AsyncApplicationWithXML.class);

  public static void main(String[] args) {
    log.info("Start AsyncApplication.. ");
    SpringApplication.run(AsyncApplicationWithXML.class, args);
  }
}

测试用例

@RunWith(SpringRunner.class)
@SpringBootTest(classes=AsyncApplicationWithXML.class)
public class AsyncApplicationWithXMLTest {
  @Autowired
  private AsyncDemo asyncDemo;

  @Test
  public void contextLoads() throws InterruptedException, ExecutionException {
    asyncDemo.asyncInvokeSimplest();
    asyncDemo.asyncInvokeWithParameter("test");
    Future<String> future = asyncDemo.asyncInvokeReturnFuture(100);
    System.out.println(future.get());
  }
}

运行测试用例,输出内容如下:

可以看出主线程的名称为main; 异步方法则使用 xmlExecutor-x,可见异常线程池起作用了

2017-03-28 20:12:10.540 INFO 12948 --- [      main] c.h.s.a.xml.AsyncApplicationWithXMLTest : Started AsyncApplicationWithXMLTest in 1.441 seconds (JVM running for 2.201)
2017-03-28 20:12:10.718 INFO 12948 --- [ xmlExecutor-2] com.hry.spring.async.xml.AsyncDemo    : asyncInvokeWithParameter, parementer=test
2017-03-28 20:12:10.721 INFO 12948 --- [ xmlExecutor-1] com.hry.spring.async.xml.AsyncDemo    : asyncSimplest
2017-03-28 20:12:10.722 INFO 12948 --- [ xmlExecutor-3] com.hry.spring.async.xml.AsyncDemo    : asyncInvokeReturnFuture, parementer=100
success:100
2017-03-28 20:12:11.729 INFO 12948 --- [    Thread-2] s.c.a.AnnotationConfigApplicationContext : Closing org.springframework.context.annotation.AnnotationConfigApplicationContext@71809907: startup date [Tue Mar 28 20:12:09 CST 2017]; root of context hierarchy

4. 对异步方法的异常处理

在调用方法时,可能出现方法中抛出异常的情况。在异步中主要有有两种异常处理方法:

1. 对于方法返回值是Futrue的异步方法: a) 一种是在调用future的get时捕获异常; b) 在异常方法中直接捕获异常

2. 对于返回值是void的异步方法:通过AsyncUncaughtExceptionHandler处理异常

AsyncExceptionDemo:

@Component
public class AsyncExceptionDemo {
  private static final Logger log = LoggerFactory.getLogger(AsyncExceptionDemo.class);

  /**
   * 最简单的异步调用,返回值为void
   */
  @Async
  public void asyncInvokeSimplest() {
    log.info("asyncSimplest");
  }

  /**
   * 带参数的异步调用 异步方法可以传入参数
   * 对于返回值是void,异常会被AsyncUncaughtExceptionHandler处理掉
   * @param s
   */
  @Async
  public void asyncInvokeWithException(String s) {
    log.info("asyncInvokeWithParameter, parementer={}", s);
    throw new IllegalArgumentException(s);
  }

  /**
   * 异常调用返回Future
   * 对于返回值是Future,不会被AsyncUncaughtExceptionHandler处理,需要我们在方法中捕获异常并处理
   * 或者在调用方在调用Futrue.get时捕获异常进行处理
   *
   * @param i
   * @return
   */
  @Async
  public Future<String> asyncInvokeReturnFuture(int i) {
    log.info("asyncInvokeReturnFuture, parementer={}", i);
    Future<String> future;
    try {
      Thread.sleep(1000 * 1);
      future = new AsyncResult<String>("success:" + i);
      throw new IllegalArgumentException("a");
    } catch (InterruptedException e) {
      future = new AsyncResult<String>("error");
    } catch(IllegalArgumentException e){
      future = new AsyncResult<String>("error-IllegalArgumentException");
    }
    return future;
  }

}

实现AsyncConfigurer接口对异常线程池更加细粒度的控制

a) 创建线程自己的线程池

b) 对void方法抛出的异常处理的类AsyncUncaughtExceptionHandler

/**
 * 通过实现AsyncConfigurer自定义异常线程池,包含异常处理
 *
 * @author hry
 *
 */
@Service
public class MyAsyncConfigurer implements AsyncConfigurer{
  private static final Logger log = LoggerFactory.getLogger(MyAsyncConfigurer.class);

  @Override
  public Executor getAsyncExecutor() {
    ThreadPoolTaskExecutor threadPool = new ThreadPoolTaskExecutor();
    threadPool.setCorePoolSize(1);
    threadPool.setMaxPoolSize(1);
    threadPool.setWaitForTasksToCompleteOnShutdown(true);
    threadPool.setAwaitTerminationSeconds(60 * 15);
    threadPool.setThreadNamePrefix("MyAsync-");
    threadPool.initialize();
    return threadPool;
  }

  @Override
  public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandler() {
     return new MyAsyncExceptionHandler();
  }

  /**
   * 自定义异常处理类
   * @author hry
   *
   */
  class MyAsyncExceptionHandler implements AsyncUncaughtExceptionHandler { 

    @Override
    public void handleUncaughtException(Throwable throwable, Method method, Object... obj) {
      log.info("Exception message - " + throwable.getMessage());
      log.info("Method name - " + method.getName());
      for (Object param : obj) {
        log.info("Parameter value - " + param);
      }
    } 

  } 

}
@SpringBootApplication
@EnableAsync // 启动异步调用
public class AsyncApplicationWithAsyncConfigurer {
  private static final Logger log = LoggerFactory.getLogger(AsyncApplicationWithAsyncConfigurer.class);

  public static void main(String[] args) {
    log.info("Start AsyncApplication.. ");
    SpringApplication.run(AsyncApplicationWithAsyncConfigurer.class, args);
  }

}

测试代码

@RunWith(SpringRunner.class)
@SpringBootTest(classes=AsyncApplicationWithAsyncConfigurer.class)
public class AsyncApplicationWithAsyncConfigurerTests {
  @Autowired
  private AsyncExceptionDemo asyncDemo;

  @Test
  public void contextLoads() throws InterruptedException, ExecutionException {
    asyncDemo.asyncInvokeSimplest();
    asyncDemo.asyncInvokeWithException("test");
    Future<String> future = asyncDemo.asyncInvokeReturnFuture(100);
    System.out.println(future.get());
  }
}

运行测试用例

MyAsyncConfigurer 捕获AsyncExceptionDemo 对象在调用asyncInvokeWithException的异常

2017-04-02 16:01:45.591 INFO 11152 --- [   MyAsync-1] c.h.s.a.exception.AsyncExceptionDemo   : asyncSimplest
2017-04-02 16:01:45.605 INFO 11152 --- [   MyAsync-1] c.h.s.a.exception.AsyncExceptionDemo   : asyncInvokeWithParameter, parementer=test
2017-04-02 16:01:45.608 INFO 11152 --- [   MyAsync-1] c.h.s.async.exception.MyAsyncConfigurer : Exception message - test
2017-04-02 16:01:45.608 INFO 11152 --- [   MyAsync-1] c.h.s.async.exception.MyAsyncConfigurer : Method name - asyncInvokeWithException
2017-04-02 16:01:45.608 INFO 11152 --- [   MyAsync-1] c.h.s.async.exception.MyAsyncConfigurer : Parameter value - test
2017-04-02 16:01:45.608 INFO 11152 --- [   MyAsync-1] c.h.s.a.exception.AsyncExceptionDemo   : asyncInvokeReturnFuture, parementer=100
error-IllegalArgumentException
2017-04-02 16:01:46.656 INFO 11152 --- [    Thread-2] s.c.a.AnnotationConfigApplicationContext : Closing org.springframework.context.annotation.AnnotationConfigApplicationContext@47af7f3d: startup date [Sun Apr 02 16:01:44 CST 2017]; root of context hierarchy

5. 源码地址

代码的GITHUB地址

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 深入理解spring boot异步调用方式@Async

    本文主要给大家介绍了关于spring boot异步调用方式@Async的相关内容,分享出来供大家参考学习,下面来一起看看详细的介绍: 1.使用背景 在日常开发的项目中,当访问其他人的接口较慢或者做耗时任务时,不想程序一直卡在耗时任务上,想程序能够并行执行,我们可以使用多线程来并行的处理任务,也可以使用spring提供的异步处理方式@Async. 2.异步处理方式 调用之后,不返回任何数据. 调用之后,返回数据,通过Future来获取返回数据 3.@Async不返回数据 使用@EnableAsyn

  • JAVA 中Spring的@Async用法总结

    JAVA 中Spring的@Async用法总结 引言: 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3.x之后,就已经内置了@Async来完美解决这个问题,本文将完成介绍@Async的用法. 1.  何为异步调用? 在解释异步调用之前,我们先来看同步调用的定义:同步就是整个处理过程顺序执行,当各个过程都执行完毕,并返回结果. 异步调用则是只是发送了调用的

  • spring boot中使用@Async实现异步调用任务

    什么是"异步调用"? "异步调用"对应的是"同步调用",同步调用指程序按照定义顺序依次执行,每一行程序都必须等待上一行程序执行完成之后才能执行:异步调用指程序在顺序执行时,不等待异步调用的语句返回结果就执行后面的程序.  同步调用 下面通过一个简单示例来直观的理解什么是同步调用: 定义Task类,创建三个处理函数分别模拟三个执行任务的操作,操作消耗时间随机取(10秒内) package com.kfit.task; import java.uti

  • Spring中@Async用法详解及简单实例

    Spring中@Async用法 引言: 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3.x之后,就已经内置了@Async来完美解决这个问题,本文将完成介绍@Async的用法. 1.  何为异步调用? 在解释异步调用之前,我们先来看同步调用的定义:同步就是整个处理过程顺序执行,当各个过程都执行完毕,并返回结果. 异步调用则是只是发送了调用的指令,调用者无需

  • spring boot 使用@Async实现异步调用方法

    使用@Async实现异步调用 什么是"异步调用"与"同步调用" "同步调用"就是程序按照一定的顺序依次执行,,每一行程序代码必须等上一行代码执行完毕才能执行:"异步调用"则是只要上一行代码执行,无需等待结果的返回就开始执行本身任务. 通常情况下,"同步调用"执行程序所花费的时间比较多,执行效率比较差.所以,在代码本身不存在依赖关系的话,我们可以考虑通过"异步调用"的方式来并发执行. &q

  • 浅谈Spring @Async异步线程池用法总结

    本文介绍了Spring @Async异步线程池用法总结,分享给大家,希望对大家有帮助 1. TaskExecutor spring异步线程池的接口类,其实质是Java.util.concurrent.Executor Spring 已经实现的异常线程池: 1. SimpleAsyncTaskExecutor:不是真的线程池,这个类不重用线程,每次调用都会创建一个新的线程. 2. SyncTaskExecutor:这个类没有实现异步调用,只是一个同步操作.只适用于不需要多线程的地方 3. Conc

  • Spring Boot之@Async异步线程池示例详解

    目录 前言 一. Spring异步线程池的接口类 :TaskExecutor 二.简单使用说明 三.定义通用线程池 1.定义线程池 2.异步方法使用线程池 3.通过xml配置定义线程池 四.异常处理 五.问题 前言 很多业务场景需要使用异步去完成,比如:发送短信通知.要完成异步操作一般有两种: 1.消息队列MQ 2.线程池处理. 我们来看看Spring框架中如何去使用线程池来完成异步操作,以及分析背后的原理. 一. Spring异步线程池的接口类 :TaskExecutor 在Spring4中,

  • Spring Boot使用Spring的异步线程池的实现

    前言 线程池,从名字上来看,就是一个保存线程的"池子",凡事都有其道理,那线程池的好处在哪里呢? 我们要让计算机为我们干一些活,其实都是在使用线程,使用方法就是new一个Runnable接口或者新建一个子类,继承于Thread类,这就会涉及到线程对象的创建与销毁,这两个操作无疑是耗费我们系统处理器资源的,那如何解决这个问题呢? 线程池其实就是为了解决这个问题而生的. 线程池提供了处理系统性能和大用户量请求之间的矛盾的方法,通过对多个任务重用已经存在的线程对象,降低了对线程对象创建和销毁

  • @Async异步线程池以及线程的命名方式

    本文记录@Async的基本使用以及通过实现ThreadFactory来实现对线程的命名. @Async的基本使用 近日有一个道友提出到一个问题,大意如下: 业务场景需要进行批量更新,已有数据id主键.更新的状态.单条更新性能太慢,所以使用in进行批量更新.但是会导致锁表使得其他业务无法访问该表,in的量级太低又导致性能太慢. 龙道友提出了一个解决方案,把要处理的数据分成几个list之后使用多线程进行数据更新.提到多线程可直接使用@Async注解来进行异步操作. 好的,接下来上面的问题我们不予解答

  • 浅谈Spring中单例Bean是线程安全的吗

    Spring容器中的Bean是否线程安全,容器本身并没有提供Bean的线程安全策略,因此可以说Spring容器中的Bean本身不具备线程安全的特性,但是具体还是要结合具体scope的Bean去研究. Spring 的 bean 作用域(scope)类型 1.singleton:单例,默认作用域. 2.prototype:原型,每次创建一个新对象. 3.request:请求,每次Http请求创建一个新对象,适用于WebApplicationContext环境下. 4.session:会话,同一个会

  • 浅谈spring中isolation和propagation的用法

    可以在XML文件中进行配置,下面的代码是个示意代码 <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <tx:method name="add*" propagation="REQUIRED" isolation="READ_COMMITTED"/>增加记录的方法 <t

  • 基于Spring中的线程池和定时任务功能解析

    1.功能介绍 Spring框架提供了线程池和定时任务执行的抽象接口:TaskExecutor和TaskScheduler来支持异步执行任务和定时执行任务功能.同时使用框架自己定义的抽象接口来屏蔽掉底层JDK版本间以及Java EE中的线程池和定时任务处理的差异. 另外Spring还支持集成JDK内部的定时器Timer和Quartz Scheduler框架. 2.线程池的抽象:TaskExecutor TaskExecutor涉及到的相关类图如下: TaskExecutor接口源代码如下所示: p

  • 浅谈java中异步多线程超时导致的服务异常

    在项目中为了提高大并发量时的性能稳定性,经常会使用到线程池来做多线程异步操作,多线程有2种,一种是实现runnable接口,这种没有返回值,一种是实现Callable接口,这种有返回值. 当其中一个线程超时的时候,理论上应该不 影响其他线程的执行结果,但是在项目中出现的问题表明一个线程阻塞,其他线程返回的接口都为空.其实是个很简单的问题,但是由于第一次碰到,还是想了一些时间的.很简单,就是因为阻塞的那个线 程没有释放,并发量一大,线程池数量就满了,所以其他线程都处于等待状态. 附上一段自己写的调

  • 浅谈Spring Boot: 接口压测及简要优化策略

    工程做好之后,需要对接口进行压力测试.可以自己编写线程池模拟多用户访问测试,也可以使用jmeter进行压测.jmeter的好处是测试方便,并且有完善的结果分析功能.本次采用jmeter进行压力测试. 1.准备数据,为了测试准备200w条以上的数据.一个简单的方法是使用下面的sql快速创建. INSERT INTO table (user_name,address) SELECT user_name, address FROM table; 但这样创建的数据不同记录的重复部分太多,和实际业务不太相

  • 浅谈C# async await 死锁问题总结

    可能发生死锁的程序类型 1.WPF/WinForm程序 2.asp.net (不包括asp.net core)程序 死锁的产生原理 对异步方法返回的Task调用Wait()或访问Result属性时,可能会产生死锁. 下面的WPF代码会出现死锁: private void Button_Click_7(object sender, RoutedEventArgs e) { Method1().Wait(); } private async Task Method1() { await Task.D

随机推荐