C++稀疏矩阵的各种基本运算并实现加法乘法

代码:

#include <iostream>
#include<malloc.h>
#include<cstdio>
using namespace std;
#define M 4
#define N 4
#define MaxSize 100
typedef int ElemType;
typedef struct
{
  int r;
  int c;
  ElemType d;///元素值
} TupNode; ///三元组定义
typedef struct
{
  int rows;
  int cols;
  int nums;
  TupNode data[MaxSize];
} TSMatrix; ///三元组顺序表定义
void CreatMat(TSMatrix &t,ElemType A[M][N])
{
  t.rows=M;
  t.cols=N;
  t.nums=0;
  for(int i=0; i<M; i++)
    for(int j=0; j<N; j++)
      if(A[i][j]!=0)
      {
        t.data[t.nums].r=i;
        t.data[t.nums].c=j;
        t.data[t.nums].d=A[i][j];
        t.nums++;
      }
}
bool Value(TSMatrix &t,ElemType x,int i,int j)
{
  int k=0,k1;
  if(i>=t.rows||j>=t.cols)
    return false;
  while(k<t.nums&&i>t.data[k].r)k++;
  while(k<t.nums&&i==t.data[k].r&&j>t.data[k].c)k++;
  if(t.data[k].r==i&&t.data[k].c==j)
    t.data[k].d=x;
  else
  {
    for(k1=t.nums-1; k1>=k; k1--)
    {
      t.data[k1+1].r=t.data[k].r;
      t.data[k1+1].c=t.data[k].c;
      t.data[k1+1].d=t.data[k].d;
    }
    t.data[k].r=i;
    t.data[k].c=j;
    t.data[k].d=x;
    t.nums++;
  }
  return true;
}
bool Assign(TSMatrix t,ElemType &x,int i,int j)
{
  int k=0;
  if(i>=t.rows||j>=t.cols)
    return false;
  while(k<t.nums&&i>t.data[k].r)k++;
  while(k<t.nums&&i==t.data[k].r&&j>t.data[k].c)k++;
  if(t.data[k].r==i&&t.data[k].c==j)
    x=t.data[k].d;
  else
    x=0;
  return true;
}
void DispMat(TSMatrix t)
{
  if(t.nums<=0)
    return ;
  printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
  printf("\t-----------------\n");
  for(int i=0; i<t.nums; i++)
    printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
}
void TranMat(TSMatrix t,TSMatrix &tb)
{
  int i,j,k=0;
  tb.rows=t.cols;
  tb.cols=t.rows;
  tb.nums=t.nums;
  if(t.nums!=0)
  {
    for(i=0; i<t.cols; i++)
      for(j=0; j<t.nums; j++)
        if(t.data[j].c==i)
        {
          tb.data[k].r=t.data[j].c;
          tb.data[k].c=t.data[j].r;
          tb.data[k].d=t.data[j].d;
          k++;
        }
  }
}
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)
{
  int i=0,j=0,k=0;
  ElemType v;
  if(a.rows!=b.rows||a.cols!=b.cols)
    return false;
  c.rows=a.rows;
  c.cols=a.cols;
  while(i<a.nums&&j<b.nums)
  {
    if(a.data[i].r==b.data[j].r)///先控制行相等
    {
      if(a.data[i].c<b.data[j].c)
      {
        c.data[k].r=a.data[i].r;
        c.data[k].c=a.data[i].c;
        c.data[k].d=a.data[i].d;
        k++;
        i++;
      }
      else if(a.data[i].c>b.data[j].c)
      {
        c.data[k].r=b.data[j].r;
        c.data[k].c=b.data[j].c;
        c.data[k].d=b.data[j].d;
        k++;
        j++;
      }
      else
      {
        v=a.data[i].d+b.data[j].d;
        if(v!=0)
        {
          c.data[k].r=a.data[i].r;
          c.data[k].c=a.data[i].c;
          c.data[k].d=v;
          k++;
        }
        i++;
        j++;
      }
    }
    else if(a.data[i].r<b.data[j].r)
    {
      c.data[k].r=a.data[i].r;
      c.data[k].c=a.data[i].c;
      c.data[k].d=a.data[i].d;
      k++;
      i++;
    }
    else
    {
      c.data[k].r=b.data[j].r;
      c.data[k].c=b.data[j].c;
      c.data[k].d=b.data[j].d;
      k++;
      j++;
    }
    c.nums=k;
  }
  return true;
}
int getvalue(TSMatrix c,int i,int j)
{
  int k=0;
  while(k<c.nums&&(c.data[k].r!=i||c.data[k].c!=j))
    k++;
  if(k<c.nums)
    return (c.data[k].d);
  else
    return (0);
}
bool MatMul(TSMatrix a,TSMatrix b,TSMatrix &c)
{
  int i,j,k,p=0;
  ElemType s;
  if(a.cols!=b.rows)
    return false;
  for(i=0; i<a.rows; i++)
    for(j=0; j<b.cols; j++)
    {
      s=0;
      for(k=0; k<a.cols; k++)
        s+=getvalue(a,i,k)*getvalue(b,k,j);
      if(s!=0)
      {
        c.data[p].r=i;
        c.data[p].c=j;
        c.data[p].d=s;
        p++;
      }
    }
  c.rows=a.rows;
  c.cols=b.cols;
  c.nums=p;
  return true;
}
int main()
{
  ElemType a1[N][N]={{1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};
  ElemType b1[M][M]={{3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};
  TSMatrix a,b,c;
  CreatMat(a,a1);
  CreatMat(b,b1);
  printf("a的三元组:\n");
  DispMat(a);
  printf("b的三元组:\n");
  DispMat(b);
  printf("a转置为c\n");
  TranMat(a,c);
  printf("c的三元组\n");
  DispMat(c);
  printf("c=a+b\n");
  MatAdd(a,b,c);
  printf("c的三元组:\n");
  DispMat(c);
  printf("c=a*b\n");
  MatMul(a,b,c);
  printf("c的三元组:\n");
  DispMat(c);
  return 0;
}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • 一张图总结C++中关于指针的那些事

    指向对象的指针,指向数据成员的指针,指向成员函数的指针: 数组即指针,数组的指针,指针数组: 指向函数的指针,指向类的成员函数的指针,指针作为函数参数,指针函数: 指针的指针,指向数组的指针:常指针,指向常对象的指针: -- 大哥,这些都是什么鬼?! 用下面一张图全概括.用例子对照图示,有感觉,就用术语将概念大声地念出来,动员所有的感官参与,搞清楚这些,不是事. 图如下: 总结 以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持.如果你想

  • Dijkstra算法最短路径的C++实现与输出路径

    某个源点到其余各顶点的最短路径 这个算法最开始心里怕怕的,不知道为什么,花了好长时间弄懂了,也写了一遍,又遇到时还是出错了,今天再次写它,心里没那么怕了,耐心研究,懂了之后会好开心的,哈哈 Dijkstra算法: 图G 如图:若要求从顶点1到其余各顶点的最短路径,该咋求: 迪杰斯特拉提出"按最短路径长度递增的次序"产生最短路径. 首先,在所有的这些最短路径中,长度最短的这条路径必定只有一条弧,且它的权值是从源点出发的所有弧上权的最小值,例如:在图G中,从源点1出发有3条弧,其中以弧(1

  • C++实现学生选课系统

    本文实例为大家分享了C++实现学生选课系统的具体代码,供大家参考,具体内容如下 #include <iostream> #include <iomanip> #include <fstream> #include<Windows.h> #include<cstring> using namespace std; struct SubList/*某个学生所学的课程中的某一个 */ { int num; /*课程代号 */ SubList *next

  • C++项目求Fibonacci数列的参考解答

    [项目:求Fibonacci数列] Fibonacci数列在计算科学.经济学等领域中广泛使用,其特点是:第一.二个数是1,从第3个数开始,每个数是其前两个数之和.据此,这个数列为:1 1 2 3 5 8 13 21 34 55 89 --,请设计程序,输出这个数列,直到这个数字超过10000. [提示]数列可以表示为: [参考解答] #include <iostream> using namespace std; int main( ) { int f1,f2,fn,n; f1=f2=1; n

  • C++实践数组类运算的实现参考

    [项目-数组类运算的实现] 设计数组类Array,为了实现测试函数中要求的功能,请补足相关的函数(构造.析构函数)和运算符重载的函数. 实现策略提示:可以将测试函数中的语句加上注释,取消一句的注释,增加相应的函数,以渐增地实现所有的功能,避免全盘考虑带来的困难. class Array { private: int* list; //用于存放动态分配的数组内存首地址 int size; //数组大小(元素个数) public: //成员函数声明 }; //要求测试函数能够运行出正确.合理的结果:

  • C++实践数组作数据成员的参考

    [项目 - 数组作数据成员]下面是设计好的一个工资类(Salary): class Salary { public: void set_salarys( );//输入职工工资(输入-1标志着工资输入结束),工资保存到salary数组中,实际人数保存到number中: void add_salarys(int x); //给每个人涨x元工资 void sort_salarys(); //对工资由大到小排序 void show_salarys( ); //显示工资信息 private: double

  • 递归删除二叉树中以x为根的子树

    名称:删除二叉树中以x为根的子树 说明:此程序的大部分内容,注释都解释的较为详细了.在这里需要提及一点的是此处递归函数flag传递的不是上篇中讲的引用,而是普通的变量,因为在向下传递参数(当前结点是否是x的信息)的过程中只要传递给对应的子树,并不需要传递给整个树的结点.在下一篇会做个关于递归传递参数的总结. //递归删除二叉树中以x为根的子树,(flag为标志) int DelRoot_x(BiTree &T, int x,int flag) { if(T == NULL) return 0;

  • C++实践分数类中运算符重载的方法参考

    [项目-分数类中的运算符重载] (1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简).比较(6种关系)的运算. class CFraction { private: int nume; // 分子 int deno; // 分母 public: //构造函数及运算符重载的函数声明 }; //重载函数的实现及用于测试的main()函数 (2)在(1)的基础上,实现分数类中的对象和整型数的四则运算.分数类中的对象可以和整型数进行四则运算,且运算符合交换律.例如:CFrac

  • C++/JAVA/C#子类调用父类函数情况总结

    时间久了就容易记不清了,特留存备用查看 c++ 1.构造函数调用   常用初始化列表  或者显示调用 1.1同一个类中构造函数调用构造函数   尽量不要这样做,因为结果不确定!避免麻烦 可以把共用的代码封装成一个私有的成员函数,然后在构造函数内统一调用. 1.2子类构造函数调用基类构造函数 -----基类有默认构造函数时,可以在子类不写,则隐式调用 -----基类无/有默认构造函数时,在子类构造函数初始化列表处调用,则显示调用     基类类名(参数) class Base { public:

  • C++面试基础之static关键字详解

    前言 static是 c++ 的关键字,顾名思义是表示静态的含义.它在 c++ 中既可以修饰变量也可以修饰函数.那当我们使用 static 时,编译器究竟做了哪些事情呢? 早先面试中被问到 static 关键字,感觉既熟悉又陌生.熟悉是都知道如何去使用它,陌生又来自不知道它究竟对我们程序做了什么.今天就来好好复习下这个关键字,本文的重点也在第三部分. 先看一下示例代码: test1.cpp #include <iostream> extern int a_int; extern void fu

随机推荐