Pandas读写CSV文件的方法示例

读csv

使用pandas读取

import pandas as pd
import csv
if name == '__main__':

# header=0——表示csv文件的第一行默认为dataframe数据的行名称,
# index_col=0——表示使用第0列作为dataframe的行索引,
# squeeze=True——表示如果文件只包含一列,则返回一个序列。
file_dataframe = pd.read_csv('../datasets/data_new_2/csv_file_name.csv', header=0, index_col=0, squeeze=True)
# 结果: 

# 当参数index_col=False 时,自动生成行索引0到n

# csv数据:

data_1 = []
# 读取行索引一样的数据,保存为list
try:
  # 行索引为i的数据有多行,列为'pre_star'
  data_1.extend(file_dataframe .loc[i]['pre_star'].values.astype(float))
except AttributeError:
  # 行索引为i的数据只有单行,
  data_1.extend([file_dataframe .loc[i]['pre_star']])
# 多行结果

# 行索引为i的数据只有一行时,不能对file_dataframe .loc[i]['pre_star']使用.values,否则会报错:

写csv

使用csv写

stu1 = [lid, k, pre_count_data[k]]
# 打开文件,写模式为追加'a'
out = open('../results/write_file.csv', 'a', newline='')
# 设定写入模式
csv_write = csv.writer(out, dialect='excel')
# 写入具体内容
csv_write.writerow(stu1)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用pandas处理CSV文件的实例讲解

    Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin

  • 使用NumPy和pandas对CSV文件进行写操作的实例

    数组存储成CSV之类的区隔型文件: 下面代码给随机数生成器指定种子,并生成一个3*4的NumPy数组 将一个数组元素的值设为NaN: In [26]: import numpy as np In [27]: np.random.seed(42) In [28]: a = np.random.randn(3,4) In [29]: a[2][2] = np.nan In [30]: print(a) [[ 0.49671415 -0.1382643 0.64768854 1.52302986] [

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • 使用pandas read_table读取csv文件的方法

    read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式.pandas中还有读取表格的通用函数read_table. 接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符. 查看csv文件的内容如下: In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,come

  • 使用实现pandas读取csv文件指定的前几行

    用于存储数据的csv文件有时候数据量是十分庞大的,然而我们有时候并不需要全部的数据,我们需要的可能仅仅是前面的几行. 这样就可以通过pandas中read_csv中指定行数读取的功能实现. 例如有data.csv文件,文件的内容如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv ,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04,co

  • pandas将numpy数组写入到csv的实例

    直接代码 data_arr = [] data = iter_files(dir,speakers) for k,v in data.items(): data_arr.append([k,v]) # print(data_arr) import numpy as np np_data = np.array(data_arr) ##写入文件 pd_data = pd.DataFrame(np_data,columns=['filename','gender']) print(pd_data) p

  • 使用pandas读取csv文件的指定列方法

    根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04

  • Pandas读写CSV文件的方法示例

    读csv 使用pandas读取 import pandas as pd import csv if name == '__main__': # header=0--表示csv文件的第一行默认为dataframe数据的行名称, # index_col=0--表示使用第0列作为dataframe的行索引, # squeeze=True--表示如果文件只包含一列,则返回一个序列. file_dataframe = pd.read_csv('../datasets/data_new_2/csv_file

  • C#实现读写CSV文件的方法详解

    目录 CSV文件标准 文件示例 RFC 4180 简化标准 读写CSV文件 使用CsvHelper 使用自定义方法 总结 项目中经常遇到CSV文件的读写需求,其中的难点主要是CSV文件的解析.本文会介绍CsvHelper.TextFieldParser.正则表达式三种解析CSV文件的方法,顺带也会介绍一下CSV文件的写方法. CSV文件标准 在介绍CSV文件的读写方法前,我们需要了解一下CSV文件的格式. 文件示例 一个简单的CSV文件: Test1,Test2,Test3,Test4,Test

  • python:pandas合并csv文件的方法(图书数据集成)

    数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

  • python读写csv文件的方法

    1.爬取豆瓣top250书籍 import requests import json import csv from bs4 import BeautifulSoup books = [] def book_name(url): res = requests.get(url) html = res.text soup = BeautifulSoup(html, 'html.parser') items = soup.find(class_="grid-16-8 clearfix").f

  • Python如何把字典写入到CSV文件的方法示例

    在实际数据分析过程中,我们分析用Python来处理数据(海量的数据),我们都是把这个数据转换为Python的对象的,比如最为常见的字典. 比如现在有几十万份数据(当然一般这么大的数据,会用到数据库的概念,不会去在CPU内存里面运行),我们不可能在Excel里面用函数进行计算一些值吧,这样是不现实的. Excel只适合处理比较少的数据,具有方便快速的优势 那么我们假设是这么多数据,现在我要对这个数据进行解析,转换,最后数据分析,处理,然后写入数据到CSV文件,这样才达到要求,那么如何把数据字典写入

  • pandas处理csv文件的方法步骤

    一.我的需求 对于这样的一个 csv 表,需要将其 (1)将营业部名称和日期和股票代码进行拼接 (2)对于除了买入金额不同的的数据需要将它们的买入金额相加,每个买入金额乘以买卖序号的符号表示该营业名称对应的买入金额 比如:xx公司,20190731,1,股票1,4000,C20201010,xxxx 我这里想要的结果是:xx公司2019713C20201010,4000 二.代码 (1)首先由于文件是 gbk,所以读取是需要注意 encoding (2)日期是int类型,所以需要转化为 字符串

  • python 使用pandas读取csv文件的方法

    目录 pandas读取csv文件的操作 1. 读取csv文件 在这里记录一下,python使用pandas读取文件的方法用到pandas库的read_csv函数 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 16:48:32 2022 @author: zxy """ # 导入包 import numpy as np import pandas as pd import matplotlib.

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

  • Python使用pandas导入csv文件内容的示例代码

    目录 使用pandas导入csv文件内容 1. 默认导入 2. 指定分隔符 3. 指定读取行数 4. 指定编码格式 5. 列标题与数据对齐 使用pandas导入csv文件内容 1. 默认导入 在Python中导入.csv文件用的方法是read_csv(). 使用read_csv()进行导入时,指定文件名即可 import pandas as pd df = pd.read_csv(r'G:\test.csv') print(df) 2. 指定分隔符 read_csv()默认文件中的数据都是以逗号

  • python使用pandas读写excel文件的方法实例

    目录 引言 读取excel文件 写入文件: 总结 引言 现在本地创建一个excel表,以及两个sheet,具体数据如下: sheet1: sheet2: 读取excel文件 pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None) io:excel文件路径. sheet_name:返回指定的sheet. header:表头,默认值为0.也可以指定多行.当header取值为None

随机推荐