详解python之heapq模块及排序操作

说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高。那么接下来我就依次来介绍我所知道的排序操作。

sorted(iterable, *, key=None, reverse=False)

list1=[1,6,4,3,9,5]
list2=['12','a6','4','c34','b9','5']

print(sorted(list1)) #[1, 3, 4, 5, 6, 9]
print(sorted(list2)) #['12', '4', '5', 'a6', 'b9', 'c34']
#总结上面两种排序:字符串排序根据元素首字符的ASCII比较进行排序,
#数字类型按照大小排序,数字不能混合排序

list3=[
 {'name':'jim','age':23,'price':500},
 {'name':'mase','age':23,'price':600},
 {'name':'tom','age':25,'price':2000},
 {'name':'alice','age':22,'price':300},
 {'name':'rose','age':21,'price':2400},
]

print(sorted(list3,key=lambda s:(s['age'],s['price'])))
#[{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}]

最后的reverse参数我就不作说明了,就是把结果进行倒序,可用作降序排列
介绍一种比lambda效率高的方式:
operator模块中的方法itemgetter
>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG
运用到上述代码
print(sorted(list3,key=itemgetter('age','price'))) #结果同上但效率会比较高

接下来的排序操作涉及到一个非常重要的一种数据结构——堆,不过今天我主要介绍这个模块中的方法,具体什么是堆,及其还有一种数据结构——栈,有时间我会专门写一篇文章来介绍。

heapq(Python内置的模块)

__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
           'nlargest', 'nsmallest', 'heappushpop']

接下来我们一一介绍。

nlargest与nsmallest,通过字面意思可以看出方法大致的作用,接下来动手测验

nlargest(n, iterable, key=None)
nsmallest(n, iterable, key=None)
#n:查找个数 iterable:可迭代对象 key:同sorted

list1=[1,6,4,3,9,5]
list2=['12','a6','4','c34','b9','5']
list3=[
 {'name':'jim','age':23,'price':500},
 {'name':'mase','age':23,'price':600},
 {'name':'tom','age':25,'price':2000},
 {'name':'alice','age':22,'price':300},
 {'name':'rose','age':21,'price':2400},
]

from operator import itemgetter
import heapq

print(heapq.nlargest(len(list1),list1))
print(heapq.nlargest(len(list2),list2))
print(heapq.nlargest(len(list3),list3,key=itemgetter('age','price')))
#以上代码输出结果同sorted

print(heapq.nsmallest(len(list1),list1))
print(heapq.nsmallest(len(list2),list2))
print(heapq.nsmallest(len(list3),list3,key=itemgetter('age','price')))
#结果是降序
[1, 3, 4, 5, 6, 9]
['12', '4', '5', 'a6', 'b9', 'c34']
[{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}]

heappush,heappop,heapify,heapreplace,heappushpop

堆结构特点:heap[0]永远是最小的元素(利用此特性排序)

heapify:对序列进行堆排序,
heappush:在堆序列中添加值
heappop:删除最小值并返回
heappushpop:添加并删除堆中最小值且返回,添加之后删除
heapreplace:添加并删除队中最小值且返回,删除之后添加

nums=[54,23,64.,323,53,3,212,453,65]
heapify(nums)  #先进行堆排序
print(heappop(nums))  #3
print(heappush(nums,50))  #添加操作,返回None
print(heappushpop(nums,10))  #由于是添加后删除,所以返回10
print(heappop(nums))  #23
print(heapreplace(nums,10))  #和heappushpop,返回50
print(nums)  #[10, 53, 54, 65, 323, 64.0, 212, 453]

merge:合并多个序列

list1 = [1, 2, 3, 4, 5, 12]
set1 = {2, 3, 9, 23, 54}
s = list(merge(list1,set1))
print(s)  #[1, 2, 2, 3, 3, 4, 5, 9, 12, 54, 23]
#发现输出结果不仅进行了合并,还进行了排序,有意思哈,可是换个代码测验,你再看一下

list1 = [31, 2, 83, 24, 5, 12]
set1 = {2, 83, 9, 23, 54}
s = list(merge(list1,set1))
print(s)  #[2, 9, 31, 2, 83, 24, 5, 12, 83, 54, 23]
#你们肯定想这是什么鬼,一点都没有头绪,其实经过我的多次测验,还是有规律的,但是由于没有什么作用就不大篇幅说明了,喜欢刨根问题的小伙伴可以尝试自己思考一下。

小伙伴们有没有想我为何介绍这个模块,并且和排序放在一起呢,其实在很多时候我们需要找序列中的前几个最大值或者最小值,使用此模块中的方法是最好不过的了。

如果需要全部排序我们使用sorted,需要查找最大或最小的几个或者多个我们使用alargest/asmallest,查找最大最小使用max/min

(0)

相关推荐

  • Python中的heapq模块源码详析

    起步 这是一个相当实用的内置模块,但是很多人竟然不知道他的存在--笔者也是今天偶然看到的,哎--尽管如此,还是改变不了这个模块好用的事实 heapq 模块实现了适用于Python列表的最小堆排序算法. 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系.因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引). 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用:第二部分回顾堆排序算法

  • 详解Python中heapq模块的用法

    heapq 模块提供了堆算法.heapq是一种子节点和父节点排序的树形数据结构.这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2].为了比较不存在的元素被人为是无限大的.heap最小的元素总是[0]. 打印 heapq 类型 import math import random from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): ou

  • Python实现的字典排序操作示例【按键名key与键值value排序】

    本文实例讲述了Python实现的字典排序操作.分享给大家供大家参考,具体如下: 对字典进行排序?这其实是一个伪命题,搞清楚python字典的定义---字典本身默认以key的字符顺序输出显示---就像我们用的真实的字典一样,按照abcd字母的顺序排列,并且本质上各自没有先后关系,是一个哈希表的结构: 但实际应用中我们确实有这种排序的"需求"-----按照values的值"排序"输出,或者按照别的奇怪的顺序进行输出,我们只需要把字典转化成list或者tuple,把字典每

  • Python实现对特定列表进行从小到大排序操作示例

    本文实例讲述了Python实现对特定列表进行从小到大排序操作.分享给大家供大家参考,具体如下: 1.在系统内新建文件rizhireplacelist.txt root@kali:~# cd python/ root@kali:~/python# ls 111.txt           listsalaryver2.py  readfile2.py            rizhireplacelist.txt  rizhi.txt            tixingexcel.txt    

  • Python常见排序操作示例【字典、列表、指定元素等】

    本文实例讲述了Python常见排序操作.分享给大家供大家参考,具体如下: 字典排序 按value排序 d1 = {"name":"python","bank":"icbc","country":china} # reverse是否倒序,x[1]代表value,x[0]为key d1 = sorted(d1.items(),lambda x: x[1],reverse=True) 按key排序 d1 = {&

  • Python实现针对json中某个关键字段进行排序操作示例

    本文实例讲述了Python实现针对json中某个关键字段进行排序操作.分享给大家供大家参考,具体如下: 示例: json_array = [{"time":20150312,"value":"c"}, {"time":20150301,"value":"a"}, {"time":20150305,"value":"b"}] js

  • 详解python之heapq模块及排序操作

    说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高.那么接下来我就依次来介绍我所知道的排序操作. sorted(iterable, *, key=None, reverse=False) list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] print(sorted(list1)) #[1, 3, 4, 5, 6, 9] print(sorted(

  • 详解Python中string模块除去Str还剩下什么

    string模块可以追溯到早期版本的Python. 以前在本模块中实现的许多功能已经转移到str物品. 这个string模块保留了几个有用的常量和类来处理str物品. 字符串-文本常量和模板 目的:包含用于处理文本的常量和类. 功能 功能capwords()将字符串中的所有单词大写. 字符串capwords.py import string s = 'The quick brown fox jumped over the lazy dog.' print(s) print(string.capw

  • 详解 python logging日志模块

    目录 1.日志简介 2.日志级别 3.修改日志级别 4.日志记录到文件 5.指定日志格式 6.记录器(logger) 7.处理器(Handler) 8.处理器操作 9.格式器(formatter) 10.logging.basicConfig 11.日志配置 转自微信公众号: Python之禅 1.日志简介 说到日志,无论是写框架代码还是业务代码,都离不开日志的记录,他能给我们定位问题带来极大的帮助. 记录日志最简单的方法就是在你想要记录的地方加上一句 print , 我相信无论是新手还是老鸟都

  • 详解 python logging日志模块

    目录 1.日志简介 2.日志级别 3.修改日志级别 4.日志记录到文件 5.指定日志格式 6.记录器(logger) 7.处理器(Handler) 8.处理器操作 9.格式器(formatter) 10.logging.basicConfig 11.日志配置 转自微信公众号: Python之禅 1.日志简介 说到日志,无论是写框架代码还是业务代码,都离不开日志的记录,他能给我们定位问题带来极大的帮助. 记录日志最简单的方法就是在你想要记录的地方加上一句 print , 我相信无论是新手还是老鸟都

  • 详解Python中Addict模块的使用方法

    目录 介绍 1.安装 2.用法 3.要牢记的事情 4.属性,如键.item等 5.默认值 6.转化为普通字典 7.计数 8.更新 9.Addict 是怎么来的 介绍 Addit 是一个Python模块,除了提供标准的字典语法外,Addit 生成的字典的值既可以使用属性来获取,也可以使用属性进行设置. 这意味着你不用再写这样的字典了: body = {     'query': {         'filtered': {             'query': {              

  • 详解Python中matplotlib模块的绘图方式

    目录 1.matplotlib之父简介 2.matplotlib图形结构 3.matplotlib两种画绘图方法 方法一:使用matplotlib.pyplot 方法二:面向对象方法 1.matplotlib之父简介 matplotlib之父John D. Hunter已经去世,他的一生辉煌而短暂,但是他开发的的该开源库还在继续着辉煌.国内介绍的资料太少了,查阅了一番整理如下: 1968 出身于美国的田纳西州代尔斯堡. 之后求学于普林斯顿大学. 2003年发布Matplotlib 0.1版,初衷

  • 一文详解Python中logging模块的用法

    目录 一.低配logging 1.v1 2.v2 3.v3 二.高配logging 1.配置日志文件 2.使用日志 三.Django日志配置文件 一.低配logging 日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别. 1.v1 import logging logging.debug('调试信息') logging.info('正常信息') logging

  • 详解Python中键盘鼠标的相关操作

    目录 一.前言 二.pyautogui模块 三.鼠标相关操作 1.鼠标移动 2.获取鼠标位置 3.鼠标点击 4.按松鼠标 5.拖动窗口 6.上下滑动 7.小程序——鼠标操控术2.0 8.小程序——连点器 四.键盘相关操作 1.按键的按松 2.键入字符串 3.热键 4.小程序——轰炸器 5.小程序——520个我爱你 五.尾声 一.前言 恭喜你,学明白类,你已经学会所有基本知识了. 这章算是一个娱乐篇,十分简单,了解一下pyautogui模块,这算是比较好学还趣味性十足的,而且可以做许多小程序. 本

  • 详解python中的文件与目录操作

    详解python中的文件与目录操作 一 获得当前路径 1.代码1 >>>import os >>>print('Current directory is ',os.getcwd()) Current directory is D:\Python36 2.代码2 如果将上面的脚本写入到文件再运行 Current directory is E:\python\work 二 获得目录的内容 Python代码 >>> os.listdir (os.getcwd

随机推荐