OpenCV2.3.1+Python2.7.3+Numpy等的配置解析

最近自己准备学习Python,之前也看了点基础知识。做图形这块需要用到OpenCV所以就需要配置环境,之前准备用的是Python3,后来发现好多python貌似并不兼容Python3,所以就装了2.7.3。

我的机子是64位的win7,用的是python2.7.3,OpenCV用的是2.3.1,网上参照了好多发现根本不能用,以下自己亲测可以。

常用的科学计算包有numpy、scipy、,matplotlib、pandas等,需要一个一个装,这里有一个解决方法就是装EPD或者是Python(x,y),我装的是EPD,它就将好多种python科学计算库一起打包装好,比较方便。

(1)将EPD装起来,python路径默认就可以
(2)将pandas装起来,默认点击就可以了
(3)安装OpenCV,它会自己默认在本文件夹下抽取出目录,大概是像这样的:

进入opencv–>build–>python,将2.7目录下的东西拷贝,就是这个

把东西拷贝到python的安装目录,默认是C:\python27下的Lib–>site-packages下面就可以了

(4)测试:

(1)进入原来OpenCV的目录samples–>python下,双击drawing.py,如果配置都对的话,可以看

到屏幕在画图,大概是这样的:

看到这个就对了!!!

(2)测试下读取图像,显示图像

import cv2
import cv
import numpy as np #测试下numpy是否有问题,下同,非必要
import scipy as sp
import matplotlib as mt
import pandas as pd
img = cv2.imread('C:\Users\Administrator\Desktop\cat.jpg')
cv2.imshow('Cat',img); #显示图形

结果:

总结

以上就是本文关于OpenCV2.3.1+Python2.7.3+Numpy等的配置解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python的numpy模块安装不成功简单解决方法总结

matplotlib简介,安装和简单实例代码

pip和pygal的安装实例教程

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • python通过opencv实现批量剪切图片
  • python+opencv实现的简单人脸识别代码示例
  • python利用OpenCV2实现人脸检测
  • Python+OpenCV人脸检测原理及示例详解
  • Python+OpenCV让电脑帮你玩微信跳一跳
  • python+opencv轮廓检测代码解析
  • Python通过OpenCV的findContours获取轮廓并切割实例
(0)

相关推荐

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • Python通过OpenCV的findContours获取轮廓并切割实例

    1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T

  • python通过opencv实现批量剪切图片

    上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下. 做图像处理需要大批量的修改图片尺寸来做训练样本,为此本程序借助opencv来实现大批量的剪切图片. import cv2 import os def cutimage(dir,suffix): for root,dirs,files in os.walk(dir): for file in files: filepath = os.path.join(root

  • python利用OpenCV2实现人脸检测

    最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别.由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改) import cv2 import numpy as np cv2.namedWindow("test")#命

  • Python+OpenCV让电脑帮你玩微信跳一跳

    前言 最近微信小游戏跳一跳大热,自己也是中毒颇久,无奈手残最高分只拿到200分.无意间看到教你用Python来玩微信跳一跳一文,在电脑上利用adb驱动工具操作手机,详细的介绍以及如何安装adb驱动可以去看这篇文章,这里就不再介绍了.但是原文每次跳跃需要手动点击,于是想尝试利用图像处理的方法自动化. 最重要的不是最终刷的分数,而是解决这个问题的过程.花了一个下午尝试各种方法,最终采用opencv的模板匹配+边缘检测,方法很简单但效果很好. 本文主要分享如何用Opencv对游戏截图进行检测,自动找到

  • python+opencv轮廓检测代码解析

    首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • OpenCV2.3.1+Python2.7.3+Numpy等的配置解析

    最近自己准备学习Python,之前也看了点基础知识.做图形这块需要用到OpenCV所以就需要配置环境,之前准备用的是Python3,后来发现好多python貌似并不兼容Python3,所以就装了2.7.3. 我的机子是64位的win7,用的是python2.7.3,OpenCV用的是2.3.1,网上参照了好多发现根本不能用,以下自己亲测可以. 常用的科学计算包有numpy.scipy.,matplotlib.pandas等,需要一个一个装,这里有一个解决方法就是装EPD或者是Python(x,y

  • 在python2.7中用numpy.reshape 对图像进行切割的方法

    遇到这么个需求:把图片按照定义的patchsize切块,然后按照z轴顺序叠放小块,如下图(仅考虑灰度图像) 图片im,设size为(h,w),patchsize为(ph,pw),则处理后大小(为简化描述,假设可以整除)为(ph,pw,w*h/ph/pw). 为简化描述,后面用h=300,w=300,ph=100,pw=100 为例,即处理后d=9. numpy.reshape 的文档:点击打开链接 特别注意第三个参数 order,其默认取值为 order='C',表示最后一个维度的元素在resh

  • Python numpy线性代数用法实例解析

    这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy中线性代数用法 矩阵乘法 >>> import numpy as np >>> x=np.array([[1,2,3],[4,5,6]]) >>> y=np.array([[7,8],[-1,7],[8,9]]) >>> x array([[1, 2, 3], [4

  • Python2手动安装更新pip过程实例解析

    现在对于python2版本,直接修改python.exe名字为python2.exe,命令python2 -m pip install --upgrade pip --force-reinstall可能不能够成功更新pip2,这时候需要检查安装文件夹下是否有Scripts文件夹和其完整性. 可在https://pypi.python.org/pypi/pip/9.0.1下载Source的pip包, 然后在本地解压,在控制台进入解压文件夹目录中,可以看到setup.py文件, 此时执行以下两行命令

  • 浅谈配置OpenCV3 + Python3的简易方法(macOS)

    我的电脑本来是有手动CMake+make安装的OpenCV3的,以及系统自带的python2.x,但是现在想用python3+OpenCV3. 安装Python3 brew install python3 没有homebrew的话请自行安装 不要使用pip3 一开始我使用 pip3 install numpy pip3 install opencv-python 虽然成功了,但是不能使用imshow及video相关的东西,要你何用. 删除原OpenCV 在原先CMake的build文件夹下使用

  • Python 3.x 安装opencv+opencv_contrib的操作方法

    Note:这篇文章不会包含任何的技术解答,仅是安装教程.同样不保证对所有可能的安装中遇到的问题都能适用.不过如果不幸又幸运地遇到了跟我一样的问题,我希望你能从我这里找到解决方案. 前言 最近做作业需要Python+opencv,但发现opencv.org官网中提供的包只支持2.7版本.因为Python已在Anaconda下已经安装了3.5且写了一些代码,所以并不想卸载了3.5重新安装2.7,所以查了资料想要能让opencv能在3.5上跑. 正文 环境:Win7, 64bit python ver

  • Python实现OpenCV的安装与使用示例

    本文实例讲述了Python实现OpenCV的安装与使用.分享给大家供大家参考,具体如下: 由于下一步要开始研究下深度学习,而深度学习领域很多的算法和应用都是用Python来实现的,把Python转成C++代码耗时太多,不如直接学习下Python直接医用Python的代码.搭建Python环境的过程是很耗时的,但是现在回头来看又觉得其实没有多少步骤,主要是在自己不明白的时候老是会出现各种各样奇奇怪怪的问题.现在只是对正确的步骤做个记录吧. 环境搭建: 1.Python的安装,没什么可说的,一直下一

  • Python-OpenCV基本操作方法详解

    基本属性 cv2.imread(文件名,属性) 读入图像 属性:指定图像用哪种方式读取文件 cv2.IMREAD_COLOR:读入彩色图像,默认参数,Opencv 读取彩色图像为BGR模式 !!!注意 cv2.IMREAD_GRAYSCALE:读入灰度图像. cv2.imshow(窗口名,图像文件) 显示图像 可以创建多个窗口 cv2.waitKey() 键盘绑定函数 函数等待特定的几毫秒,看是否由键盘输入. cv2.namedWindow(窗口名,属性) 创建一个窗口 属性:指定窗口大小模式

  • 引用numpy出错详解及解决方法

     numpy出错 解决方案 Problem: how to import numpy in subdirectory? Import error of numpy within subfolder. 错误信息: >>> import numpy Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/pyth

  • Python中矩阵库Numpy基本操作详解

    NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作. 下面对numpy中的操作进行总结. numpy包含两种基本的数据类型:数组和矩阵. 数组(Arrays) >>> from numpy import * >>> a1=array([1,1,1]) #定义一个数组 >>> a2=array([2,2,2]) >>> a1+a2 #对于元素相加 array(

随机推荐