pytorch permute维度转换方法
permute
prediction = input.view(bs, self.num_anchors, self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
转置:
import torch x = torch.linspace(1, 9, steps=9).view(3, 3) b=x.permute(1,0) print(b) print(b.permute(1,0))
以上这篇pytorch permute维度转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pytorch 调整某一维度数据顺序的方法
在pytorch中,Tensor是以引用的形式存在的,故而并不能直接像python交换数据那样 a = torch.Tensor(3,4) a[0],a[1] = a[1],a[0] # 这会导致a的结果为a=(a[1],a[1],a[2]) # 而非预期的(a[1],a[0],a[2]) 这是因为引用赋值导致的,在交换过程,如下所示,当b的值赋值与a的时候,因为tmp指针与a是同一变量的不同名,故而tmp的内容也会变为b. # 交换a,b a,b = b,a # 等价于 tmp = a a =
-
pytorch 转换矩阵的维数位置方法
例如: preds = to_numpy(preds)#preds是[2985x16x2] preds = preds.transpose(2, 1, 0)#preds[2x16x2985] 以上这篇pytorch 转换矩阵的维数位置方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
pytorch permute维度转换方法
permute prediction = input.view(bs, self.num_anchors, self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous() 转置: import torch x = torch.linspace(1, 9, steps=9).view(3, 3) b=x.permute(1,0) print(b) print(b.permute(1,0)) 以上这篇pytorch permute维度
-
pytorch中permute()函数用法补充说明(矩阵维度变化过程)
目录 一.前言 二.举例解释 1.permute(0,1,2) 2.permute(0,1,2) ⇒ permute(0,2,1) 3.permute(0,2,1) ⇒ permute(1,0,2) 4.permute(1,0,2) ⇒ permute(0,2,1) 三.写在最后 一.前言 之前写了篇torch中permute()函数用法文章,在详细的说一下permute函数里维度变化的详细过程 非常感谢@m0_46225327对本文案例更加细节补充 注意: 本文是这篇torch中permute
-
PyTorch中permute的基本用法示例
目录 permute(dims) 附:permute(多维数组,[维数的组合]) 总结 permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # -->
-
pytorch中permute()函数用法实例详解
目录 前言 三维情况 变化一:不改变任何参数 变化二:1与2交换 变化三:0与1交换 变化四:0与2交换 变化五:0与1交换,1与2交换 变化六:0与1交换,0与2交换 总结 前言 本文只讨论二维三维中的permute用法 最近的Attention学习中的一个permute函数让我不理解 这个光说太抽象 我就结合代码与图片解释一下 首先创建一个三维数组小实例 import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维
-
PyTorch中Tensor的维度变换实现
对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size
-
PyTorch中permute的用法详解
permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(
-
基于PyTorch的permute和reshape/view的区别介绍
二维的情况 先用二维tensor作为例子,方便理解. permute作用为调换Tensor的维度,参数为调换的维度.例如对于一个二维Tensor来说,调用tensor.permute(1,0)意为将1轴(列轴)与0轴(行轴)调换,相当于进行转置. In [20]: a Out[20]: tensor([[0, 1, 2], [3, 4, 5]]) In [21]: a.permute(1,0) Out[21]: tensor([[0, 3], [1, 4], [2, 5]]) 如果使用view(
-
Pytorch四维Tensor转图片并保存方式(维度顺序调整)
目录 Pytorch四维Tensor转图片并保存 1.维度顺序转换 2.转为numpy数组 3.根据第一维度batch_size逐个读取中间结果,并存储到磁盘中 Pytorch中Tensor介绍 torch.Tensor或torch.tensor注意事项 创建tensor的四种主要方法 总结 Pytorch四维Tensor转图片并保存 最近在复现一篇论文代码的过程中,想要输出中间图片的结果图,通过debug发现在pytorch网络中是用Tensor存储的四维张量. 1.维度顺序转换 第一维代表的
-
浅谈pytorch和Numpy的区别以及相互转换方法
如下所示: # -*- coding: utf-8 -*- # @Time : 2018/1/17 16:37 # @Author : Zhiwei Zhong # @Site : # @File : Numpy_Pytorch.py # @Software: PyCharm import torch import numpy as np np_data = np.arange(6).reshape((2, 3)) # numpy 转为 pytorch格式 torch_data = torch.
随机推荐
- 如何防范PowerShell代码注入漏洞绕过受限语言模式
- python读文件逐行处理的示例代码分享
- XML简易教程之二
- php判断终端是手机还是电脑访问网站的思路及代码
- php上传文件,创建递归目录的实例代码
- 极简的Python入门指引
- Android实现动态高斯模糊效果
- imgAreaSelect 中文文档帮助说明
- JavaScript 组件之旅(一)分析和设计
- 机房速度和带宽测试的简单方法
- C/C++: Inline function, calloc 对比 malloc
- Java中SimpleDateFormat日期格式转换详解及代码示例
- 解决layui checkbox 提交多个值的问题
- 使用JDBC连接Mysql数据库会出现的问题总结
- Linux查看PCIe版本及速率的方法
- Python获取Redis所有Key以及内容的方法
- 使用Python开发SQLite代理服务器的方法
- SpringBoot下RabbitMq实现定时任务
- python 通过视频url获取视频的宽高方式
- Android之自定义实现BaseAdapter(通用适配器三)