Pandas读取并修改excel的示例代码

一、前言

最近总是和excel打交道,由于数据量较大,人工来修改某些数据可能会有点浪费时间,这时候就使用到了Python数据处理的神器—–Pandas库,话不多说,直接上Pandas。

二、安装

这次使用的python版本是python2.7,安装python可以去python的官网进行下载,这里不多说了。

安装完成后使用Python自带的包管理工具pip可以很快的安装pandas。

pip install pandas

如果使用的是Anaconda安装的Python,会自带pandas。

三、read_excel()介绍

首先可以先创建一个excel文件当作实验数据,名称为example.xlsx,内容如下:

name age gender
John 30 male
Mary 22 female
Smith 32 male

这里是很简单的几行数据,我们来用pandas实际操作一下这个excel表。

# coding:utf-8
import pandas as pd

data = pd.read_excel('example.xlsx', sheet_name='Sheet1')
print data

结果如下:

这里使用了read_excel()方法来读取excel,来看一个read_excel()这个方法的API,这里只截选一部分经常使用的参数:

pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None)

这里主要参数为io,sheet_name,header,usecols和names

  • io:excel文件,如果命名为中文,在python2.7中,需要使用decode()来解码成unicode字符串,例如: pd.read_excel('示例'.decode('utf-8))
  • sheet_name:返回指定的sheet,如果将sheet_name指定为None,则返回全表,如果需要返回多个表,可以将sheet_name指定为一个列表,例如['sheet1', 'sheet2']
  • header:指定数据表的表头,默认值为0,即将第一行作为表头。
  • usecols:读取指定的列,例如想要读取第一列和第二列数据:
pd.read_excel("example.xlsx", sheet_name=None, usecols=[0, 1])

四、使用

这里先来一个在机器学习中经常使用的:将所有gender为male的值改为0,female改为1。

# coding:utf-8
import pandas as pd
from pandas import DataFrame

# 读取文件
data = pd.read_excel("example.xlsx", sheet_name="Sheet1")

# 找到gender这一列,再在这一列中进行比较
data['gender'][data['gender'] == 'male'] = 0
data['gender'][data['gender'] == 'female'] = 1
print data

结果如下:

需要注意的是,这里的data为excel数据的一份拷贝,对data进行修改并不会直接影响到我们原来的excel,必须在修改后保存才能够修改excel。保存的代码如下:

DataFrame(data).to_excel('example.xlsx', sheet_name='Sheet1', index=False, header=True)

这时候我们再打开example.xlsx文件看看是否更改了:

如果我们想要新增加一列或者一行数据怎么办呢?这里给出参考:

新增列数据:

data['列名称'] = None

新增行数据,这里行的num为excel中自动给行加的id数值

data.loc[行的num] = [值1, 值2, ...]

以上面的数据为例:

# coding:utf-8
import pandas as pd
from pandas import DataFrame

data = pd.read_excel("example.xlsx", sheet_name='Sheet1')

# 增加行数据,在第5行新增
data.loc[5] = ['James', 32, 'male']

# 增加列数据,给定默认值None
data['profession'] = None

# 保存数据
DataFrame(data).to_excel('example.xlsx', sheet_name='Sheet1', index=False, header=True)

打开excel看到的结果如下:

说完了增加一行或一列,那怎样删除一行或一列呢?

import pandas as pd
from pandas import DataFrame

data = pd.read_excel("example.xlsx", sheet_name='Sheet1')

# 删除gender列,需要指定axis为1,当删除行时,axis为0
data = data.drop('gender', axis=1)

# 删除第3,4行,这里下表以0开始,并且标题行不算在类
data = data.drop([2, 3], axis=0)

# 保存
DataFrame(data).to_excel('example.xlsx', sheet_name='Sheet1', index=False, header=True)

这时候打开excel可以看见gender列和除标题行的第3,4行被删除了。

总结

pandas除了上述的基本功能以外,还有其它更高级的操作,想要进一步学习的小伙伴们可以去pandas网站进行学习。

(0)

相关推荐

  • Python3使用pandas模块读写excel操作示例

    本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

  • pandas分别写入excel的不同sheet方法

    pandas可以非常方便的写数据到excel,那么如何写多个dataframe到不同的sheet呢? 使用pandas.ExcelWriter import pandas as pd writer = pd.ExcelFile('your_path.xlsx') df1 = pd.DataFrame() df2 = pd.DataFrame() df1.to_excel(writer, sheet_name='df_1') df2.to_excel(writer, sheet_name='df_

  • 用Python的pandas框架操作Excel文件中的数据教程

    引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa

  • 对Python 2.7 pandas 中的read_excel详解

    导入pandas模块: import pandas as pd 使用import读入pandas模块,并且为了方便使用其缩写pd指代. 读入待处理的excel文件: df = pd.read_excel('log.xls') 通过使用read_excel函数读入excel文件,后面需要替换成excel文件所在的路径.读入之后变为pandas的DataFrame对象.DataFrame是一个面向列(column-oriented)的二维表结构,且含有列表和行标,对excel文件的操作就转换为对Da

  • 解决Python pandas df 写入excel 出现的问题

    学习Python数据分析挖掘实战一书时,在数据预处理阶段,有一节要使用拉格朗日插值法对缺失值补充,代码如下: #-*- coding:utf-8 -*- import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import lagrange#导入拉格朗日插值函数 inputfile="catering_sale.xls" outputfile="H:\python\file\pyth

  • 利用pandas将numpy数组导出生成excel的实例

    上图 代码 # -*- coding: utf-8 -*- """ Created on Sun Jun 18 20:57:34 2017 @author: Bruce Lau """ import numpy as np import pandas as pd # prepare for data data = np.arange(1,101).reshape((10,10)) data_df = pd.DataFrame(data) # ch

  • Python 中pandas.read_excel详细介绍

    Python 中pandas.read_excel详细介绍 #coding:utf-8 import pandas as pd import numpy as np filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls" #filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3

  • 使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

    如下所示: # coding=utf-8 import pandas as pd # 读取csv文件 3列取名为 name,sex,births,后面参数格式为names= names1880 = pd.read_csv("names_1880.txt", names=['name', 'sex', 'births']) print names1880 print names1880.groupby('sex').births.sum() 输出如下 最后一行是说按sex分组并计算bir

  • Windows下Python使用Pandas模块操作Excel文件的教程

    安装Python环境 ANACONDA是一个Python的发行版本,包含了400多个Python最常用的库,其中就包括了数据分析中需要经常使用到的Numpy和Pandas等.更重要的是,不论在哪个平台上,都可以一键安装,自动配置好环境,不需要用户任何的额外操作,非常方便.因此,安装Python环境就只需要到ANACONDA网站上下载安装文件,双击安装即可. ANACONDA官方下载地址:https://www.continuum.io/downloads 安装完成之后,使用windows + r

  • Pandas读取并修改excel的示例代码

    一.前言 最近总是和excel打交道,由于数据量较大,人工来修改某些数据可能会有点浪费时间,这时候就使用到了Python数据处理的神器-–Pandas库,话不多说,直接上Pandas. 二.安装 这次使用的python版本是python2.7,安装python可以去python的官网进行下载,这里不多说了. 安装完成后使用Python自带的包管理工具pip可以很快的安装pandas. pip install pandas 如果使用的是Anaconda安装的Python,会自带pandas. 三.

  • Pandas实现批量拆分与合并Excel的示例代码

    目录 前言 一.拆分成小表格 二.合并excel 1.介绍 2.代码 前言 提示:这里可以添加本文要记录的大概内容: 将一个EXCEL等份拆成多个EXCEL 将多个小EXCEL合并成一个大EXCEL并标记来源 提示:以下是本篇文章正文内容,下面案例可供参考 一.拆分成小表格 代码如下(示例): import pandas as pd import os work_dir=r"G:\360Downloads\myself\zuoye\合并拆分" splits_dir=f"{wo

  • pandas实现按行选择的示例代码

    目录 1.自定义行索引 2. 按普通索引选择数据 2.1 按普通索引选择单行数据 2.2 按行索引选择多行数据 3.按位置索引选择数据 3.2 按位置索引选择多行数据 4.选择连续多行数据 5.选择满足条件的行 5.1单个条件选择 5.2 多个条件选择 5.2.1 多个条件是且的关系 5.2.2 多个条件是或的关系 本文所用到的Excel表格内容如下: 1.自定义行索引 dataframe读取Excel表格时是由自定义行索引的.这里为了展示效果,先进行自定义行索引的操作 import panda

  • C#创建、读取和修改Excel的方法

    本文实例讲述了C#创建.读取和修改Excel的方法.分享给大家供大家参考.具体如下: windows下我们可以通过 Jet OLE DB访问Excel,就行访问数据库一样 复制代码 代码如下: // Namespaces, Variables, and Constants using System; using System.Configuration; using System.Data; private OleDbDataAdapter da; private DataTable dt; p

  • android调用C语言实现内存的读取与修改的方法示例

    写之前需要准备以下内容 android studio 已ROOT安卓设备 GG修改器 打开android studio,创建Native C++ Project activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" andro

  • python 按照sheet合并多个Excel的示例代码(多个sheet)

    工作中会遇到这样的需求,有多个Excel的格式一样,都有多个sheet,且每个sheet的名字和格式一样,我们需要按照sheet 合并,就是说合并后的表的格式和合并钱的格式是一样的.A.B.C表格式如图 现在需要合并成下图: 我这次处理是保留第一个表的首行,其余的表的首行都不保留.因此结果会和上面有所不同,上面的是将所有的首行都保存 import xlrd,xlsxwriter #待合并excel allxls=["C:/xxx/xxx.xlsx", "C:/xxx/xxx.

  • 使用Python读取和修改Excel文件(基于xlrd、xlwt和openpyxl模块)

    目录 1.使用xlrd模块对xls文件进行读操作 1.1 获取工作簿对象 1.2 获取工作表对象 1.3 获取工作表的基本信息 1.4 按行或列方式获得工作表的数据 2.使用xlwt模块对xls文件进行写操作 2.1 创建工作簿 2.2 创建工作表 2.3 按单元格的方式向工作表中添加数据 2.4 按行或列方式向工作表中添加数据 2.5 保存创建的文件 3.使用openpyxl模块对xlsx文件进行读操作 3.1 获取工作簿对象 3.2 获取所有工作表名 3.3 获取工作表对象 3.5 获取工作

  • ASP.Net MVC利用NPOI导入导出Excel的示例代码

    什么是NPOI 该项目是位于http://poi.apache.org/的POI Java项目的.NET版本.POI是一个开源项目,可以帮助您读取/写入xls,doc,ppt文件.它有着广泛的应用.本文给大家介绍ASP.Net MVC利用NPOI导入导出Excel的问题. 因近期项目遇到所以记录一下: 首先导出Excel: 首先引用NPOI包 (Action一定要用FileResult) /// <summary> /// 批量导出本校第一批派位学生 /// </summary>

  • JavaScript实现导入导出excel的示例代码

    目录 Excel导入 html代码 js代码 Excel导出 html代码 js代码 Excel导入 html代码 <button style={{ color: '#1890ff', fontSize: '14px', cursor: 'pointer' }} onClick={() => { upFile(); }} > 导入 </button> <input id="upFile" type="file" style={{

  • 实现easyui的datagrid导出为excel的示例代码

    之前有介绍过如何实现easyui里datagrid内容的打印,今天给大家介绍下如何实现datagrid内容导出为excel文件.以下为代码实现: export.js function ChangeToTable(printDatagrid) { var tableString = '<table cellspacing="0" class="pb">'; var frozenColumns = printDatagrid.datagrid("o

随机推荐