numpy下的flatten()函数用法详解

flatten是numpy.ndarray.flatten的一个函数,其官方文档是这样描述的:

ndarray.flatten(order='C')

Return a copy of the array collapsed into one dimension.

Parameters:

 
order : {‘C', ‘F', ‘A', ‘K'}, optional

‘C' means to flatten in row-major (C-style) order. ‘F' means to flatten in column-major (Fortran- style) order. ‘A' means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K' means to flatten a in the order the elements occur in memory. The default is ‘C'.

Returns:
y : ndarray

A copy of the input array, flattened to one dimension.

即返回一个折叠成一维的数组。但是该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的。

例子:

1、用于array对象

from numpy import *

>>>a=array([[1,2],[3,4],[5,6]]) ###此时a是一个array对象
>>>a
array([[1,2],[3,4],[5,6]])
>>>a.flatten()
array([1,2,3,4,5,6])

2、用于mat对象

>>> a=mat([[1,2,3],[4,5,6]])
>>> a
matrix([[1, 2, 3],
  [4, 5, 6]])<br>>>> a.flatten()<br>matrix([[1, 2, 3, 4, 5, 6]])<br>

3、但是该方法不能用于list对象

>>> a=[[1,2,3],[4,5,6],['a','b']]
[[1, 2, 3], [4, 5, 6], ['a', 'b']]
>>> a.flatten()      ###报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'flatten' 

想要list达到同样的效果可以使用列表表达式:

>>> [y for x in a for y in x]
[1, 2, 3, 4, 5, 6, 'a', 'b']

4、用在矩阵

>>> a = [[1,3],[2,4],[3,5]]
>>> a = mat(a)
>>> y = a.flatten()
>>> y
matrix([[1, 3, 2, 4, 3, 5]])
>>> y = a.flatten().A
>>> y
array([[1, 3, 2, 4, 3, 5]])
>>> shape(y)
(1, 6)
>>> shape(y[0])
(6,)
>>> y = a.flatten().A[0]
>>> y
array([1, 3, 2, 4, 3, 5])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python的numpy库中将矩阵转换为列表等函数的方法

    这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2

  • 浅谈numpy中linspace的用法 (等差数列创建函数)

    linspace 函数 是创建等差数列的函数, 最好是在 Matlab 语言中见到这个函数的,近期在学习Python 中的 Numpy, 发现也有这个函数,以下给出自己在学习过程中的一些总结. (1)指定起始点 和 结束点. 默认 等差数列个数为 50. (2)指定等差数列个数 (3)如果数列的元素个数指定, 可以设置 结束点 状态. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not

  • 对numpy中的transpose和swapaxes函数详解

    transpose() 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数. 我们看如下一个numpy的数组: `arr=np.arange(16).reshape((2,2,4)) arr= array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) ` 那么有: arr.transpose(2,1,0) array([[[ 0, 8], [ 4, 12]], [[ 1

  • Numpy之random函数使用学习

    random模块用于生成随机数,下面看看模块中一些常用函数的用法: numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组. #numpy.random.rand(d0, d1, ..., dn) import numpy as np #无参 np.random.rand()#生成生成[0,1)之间随机浮点数 type(np.random.rand())#float #d0,d1....表示传入的数组形状 #一个参数 np.rand

  • Numpy中stack(),hstack(),vstack()函数用法介绍及实例

    1.stack()函数 函数原型为:stack(arrays,axis=0),arrays可以传数组和列表.axis的含义我下面会讲解,我们先来看个例子,然后我会分析输出结果. import numpy as np a=[[1,2,3], [4,5,6]] print("列表a如下:") print(a) print("增加一维,新维度的下标为0") c=np.stack(a,axis=0) print(c) print("增加一维,新维度的下标为1&qu

  • python numpy函数中的linspace创建等差数列详解

    前言 本文主要给大家介绍的是关于linspace创建等差数列的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. numpy.linspace 是用于创建一个由等差数列构成的一维数组.它最长用的有三个参数,当然不止三个. 第一个例子,用到三个参数,第一个参数表示起始点.第二个参数表示终止点,第三个参数表示数列的个数. import numpy as np print(np.linspace(1,10,10,endpoint=False)) 创建一个元素全部为1的等差数列,

  • 浅析python中numpy包中的argsort函数的使用

    概述 argsort()函数在模块numpy.core.fromnumeric中. 在python中排序数组,或者获取排序顺序的时候,我们常常使用numpy包的argsort函数来完成. 如下图所示,是使用python获取到数组中的排序的顺序. data=numpy.array([1,2,3,4,5]) datasort=numpy.argsort(data) datasort Out[39]: array([0, 1, 2, 3, 4], dtype=int64) data Out[40]:

  • Python numpy 常用函数总结

    Numpy是什么 在没给大家介绍numpy之前先给大家说下python的基本概念. Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. numpy很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. 数组 数组常用函数 1.w

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • NumPy 数学函数及代数运算的实现代码

    一.实验介绍 1.1 实验内容 如果你使用 Python 语言进行科学计算,那么一定会接触到NumPy.NumPy 是支持 Python 语言的数值计算扩充库,其拥有强大的多维数组处理与矩阵运算能力.除此之外,NumPy 还内建了大量的函数,方便你快速构建数学模型. 1.2 实验知识点 NumPy 安装 NumPy 数值类型介绍 1.3 实验环境 Python3 Jupyter Notebook 1.4 适合人群 本课程难度为一般,属于初级级别课程,适合具有 Python 基础,并对使用 Num

随机推荐