详解Java泛型及其应用

引出泛型

我们通过如下的示例,引出为什么泛型的概念。

public class Test {

  public static void main(String[] args) {
    List list = new ArrayList();
    list.add("abc");
    list.add(2);

    for (int i = 0; i < list.size(); i++) {
      String name = (String) list.get(i); // error
      System.out.println("name:" + name);
    }
  }
}

当获取列表中的第二个元素时,会报错,java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String。这是常见的类型转换错误。

当我们将元素放入到列表中,并没有使用指定的类型,在取出元素时使用的是默认的 Object 类型。因此很容易出现类型转换的异常。

我们想要实现的结果是,集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现 java.lang.ClassCastException 异常。泛型刚好能满足我们的需求。

什么是泛型?

泛型,即参数化类型。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

泛型的本质是为了参数化类型,即在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型。在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口和泛型方法。

泛型的特点

Java 语言中引入泛型是一个较大的功能增强。不仅语言、类型系统和编译器有了较大的变化,已支持泛型,而且类库也进行了大翻修,所以许多重要的类,比如集合框架,都已经成为泛型化的了。这带来了很多好处:

  1. 类型安全。 泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的程度上验证类型假设。
  2. 消除强制类型转换。 泛型的一个附带好处是,消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。
  3. 潜在的性能收益。 泛型为较大的优化带来可能。在泛型的初始实现中,编译器将强制类型转换(没有泛型的话,程序员会指定这些强制类型转换)插入生成的字节码中。

命名类型参数

推荐的命名约定是使用大写的单个字母名称作为类型参数。对于常见的泛型模式,推荐的名称是:

  1. K:键,比如映射的键
  2. V:值,比如 List 和 Set 的内容,或者 Map 中的值
  3. E:元素
  4. T:泛型
public class Generic<T> {
  //key的类型为T
  private T key;

  public Generic(T key) {
  	//泛型构造方法形参key的类型也为T
    this.key = key;
  }

  public T getKey() {
  	//泛型方法getKey的返回值类型为T
    return key;
  }
}

如上定义了一个普通的泛型类,成员变量的类型为 T,T的类型由外部指定。泛型方法和泛型构造函数同样如此。

Generic<Integer> genericInteger = new Generic<Integer>(123456); //1

Generic<String> genericString = new Generic<String>("key_vlaue"); // 2

System.out.println("key is " + genericInteger.getKey());
System.out.println("key is " + genericString.getKey());

泛型的类型参数只能是类类型(包括自定义类),不能是简单类型。传入的实参类型需与泛型的类型参数类型相同,即为Integer/String。

如上所述,定义的泛型类,就一定要传入泛型类型实参么?

并不是这样,在使用泛型的时候如果传入泛型实参,则会根据传入的泛型实参做相应的限制,此时泛型才会起到本应起到的限制作用。如果不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型可以为任何的类型。

Generic genericString = new Generic("111111");
Generic genericInteger = new Generic(4444);

System.out.println("key is " + genericString.getKey());
System.out.println("key is " + genericInteger.getKey());

如上的代码片段,将会输出如下的结果:

key is 111111
key is 4444

在不传入泛型类型实参的情况下,泛型类中使用的泛型防范或成员变量可以为 Integer 或 String 等等其他任意类型。不过需要注意的是,泛型的类型参数只能是类类型,不能是简单类型。且不能对确切的泛型类型使用 instanceof 操作。对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的呢?具体看如下的示例:

public class GenericTest {

  public static void main(String[] args) {

    Generic<Integer> name = new Box<String>("111111");
    Generic<String> age = new Box<Integer>(712);

    System.out.println("name class:" + name.getClass());
    System.out.println("age class:" + age.getClass());
    System.out.println(name.getClass() == age.getClass());  // true
  }

}

由输出结构可知,在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本例中为 Generic),当然在逻辑上我们可以理解成多个不同的泛型类型。

究其原因,在于 Java 中的泛型这一概念提出的目的,其只是作用于代码编译阶段。在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦除。也就是说,成功编译过后的 class 文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。

泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

通配符

Ingeter 是 Number 的一个子类,同时 Generic<Ingeter> 与 Generic<Number> 实际上是相同的一种基本类型。那么问题来了,在使用 Generic<Number> 作为形参的方法中,能否使用Generic<Ingeter> 的实例传入呢?在逻辑上类似于 Generic<Number> 和 Generic<Ingeter> 是否可以看成具有父子关系的泛型类型呢?下面我们通过定义一个方法来验证。

public void show(Generic<Number> obj) {
  System.out.println("key value is " + obj.getKey());
}

进行如下的调用

Generic<Integer> genericInteger = new Generic<Integer>(123);

show(genericInteger); //error Generic<java.lang.Integer> cannot be applied to Generic<java.lang.Number>

通过提示信息我们可以看到 Generic<Integer> 不能被看作为 Generic<Number> 的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

我们不能因此定义一个 show(Generic<Integer> obj)来处理,因此我们需要一个在逻辑上可以表示同时是Generic和Generic父类的引用类型。由此类型通配符应运而生。

T、K、V、E 等泛型字母为有类型,类型参数赋予具体的值。除了有类型,还可以用通配符来表述类型,? 未知类型,类型参数赋予不确定值,任意类型只能用在声明类型、方法参数上,不能用在定义泛型类上。将方法改写成如下:

public void show(Generic<?> obj) {
  System.out.println("key value is " + obj.getKey());
}

此处 ? 是类型实参,而不是类型形参。即和 Number、String、Integer 一样都是实际的类型,可以把 ? 看成所有类型的父类,是一种真实的类型。可以解决当具体类型不确定的时候,这个通配符就是 ?;当操作类型时,不需要使用类型的具体功能时,只使用 Object 类中的功能。那么可以用 ? 通配符来表未知类型。

泛型上下边界

在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。为泛型添加上边界,即传入的类型实参必须是指定类型的子类型。

public void show(Generic<? extends Number> obj) {
  System.out.println("key value is " + obj.getKey());
}

我们在泛型方法的入参限定参数类型为 Number 的子类。

Generic<String> genericString = new Generic<String>("11111");
Generic<Integer> genericInteger = new Generic<Integer>(2222);

showKeyValue1(genericString); // error
showKeyValue1(genericInteger);

当我们的入参为 String 类型时,编译报错,因为 String 类型并不是 Number 类型的子类。

类型通配符上限通过形如 Generic<? extends Number> 形式定义;相对应的,类型通配符下限为Generic<? super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述。

泛型数组

在 java 中是不能创建一个确切的泛型类型的数组的,即:

List<String>[] ls = new ArrayList<String>[10]; 

如上会编译报错,而使用通配符创建泛型数组是可以的:

List<?>[] ls = new ArrayList<?>[10]; 

//List<String>[] ls = new ArrayList[10];

JDK1.7 对泛型的简化,所以另一种声明也是可以的。

由于JVM泛型的擦除机制,在运行时 JVM 是不知道泛型信息的。泛型数组实际的运行时对象数组只能是原始类型( T[]为Object[],Pair[]为Pair[] ),而实际的运行时数组对象可能是T类型( 虽然运行时会擦除成原始类型 )。成功创建泛型数组的唯一方式就是创建一个被擦出类型的新数组,然后对其转型。

public class GenericArray<T> {
  private Object[] array; //维护Object[]类型数组
  @SupperessWarning("unchecked")
  public GenericArray(int v) {
    array = new Object[v];
  }
  public void put(int index, T item) {
    array[index] = item;
  }
  public T get(int index) {
  	return (T)array[index];
  } //数组对象出口强转
  public T[] rep() { return (T[])array; } //运行时无论怎样都是Object[]类型
  public static void main (String[] args){
    GenericArray<Integer> ga = new GenericArray<Integer>(10);
    // Integer[] ia = ga.rep(); //依旧ClassCastException
    Object[] oa = ga.rep(); //只能返回对象数组类型为Object[]
    ga.put(0, 11);
    System.out.println(ga.get(0)); // 11
  }
}

在运行时,数组对象的出口做转型输出,入口方法在编译期已实现类型安全,所以出口方法可以放心强制类型转换,保证成功。

小结

本文主要讲了 Java 泛型的相关概念和应用。泛型使编译器可以在编译期间对类型进行检查以提高类型安全,减少运行时由于对象类型不匹配引发的异常。由泛型的诞生介绍相关的概念,在保证代码质量的情况下,如何使用泛型去简化开发。

以上所述是小编给大家介绍的Java泛型及其应用详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • 多个java泛型示例分享

    1.泛型类 1.1普通泛型 复制代码 代码如下: package test.lujianing;/** * 泛型类 * @param <T> */class Test<T>{    private T obj;    public void setValue(T obj){        this.obj =obj;    }    public T getValue(){        System.out.println(obj.getClass().getName());  

  • Java中泛型的用法总结

    本文实例总结了Java中泛型的用法.分享给大家供大家参考.具体如下: 1 基本使用 public interface List<E> { void add(E); Iterator<E> iterator(); } 2 泛型与子类 Child是Parent的子类,List<Child>却不是List<Parent>的子类. 因此:List<Object> list = new ArrayList<String>()是错误的. 如果上面

  • 应用Java泛型和反射导出CSV文件的方法

    本文实例讲述了应用Java泛型和反射导出CSV文件的方法.分享给大家供大家参考.具体如下: 项目中有需求要把数据导出为CSV文件,因为不同的类有不同的属性,为了代码简单,应用Java的泛型和反射,写了一个函数,完成导出功能. 复制代码 代码如下: public <T> void saveFile(List<T> list, String outFile) throws IOException {         if (list == null || list.isEmpty())

  • 基于java中泛型的总结分析

    要我直接说出泛型是个what我还真讲不出来,这里先由一道问题引入: 定义一个坐标点类,要求能保存各种类型的数据,如:整形,浮点型,和字符串类型 既然变量类型起先不确定,那么很容易想到就是用所有类型的父类,也就是Object类来代替 不废话了,用代码来体现 实例1:用Object来实现不确定的数据类型输入 复制代码 代码如下: //这是定义的坐标点类class Point {    private Object x;    private Object y; //用Object来表示不确定的类型 

  • Java8中对泛型目标类型推断方法的改进

    一.简单理解泛型 泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.通俗点将就是"类型的变量".这种类型变量可以用在类.接口和方法的创建中. 理解Java泛型最简单的方法是把它看成一种便捷语法,能节省你某些Java类型转换(casting)上的操作: 复制代码 代码如下: List<Apple> box = new ArrayList<Apple>();box.add(new Apple());Apple a

  • Java 获取泛型的类型实例详解

    Java 获取泛型的类型实例详解 Java 泛型实际上有很多缺陷,比如不能直接获取泛型的类型,不能获取带泛型类等. 以下方式是不正确的: ①.获取带泛型的类的类型 Class lstUClazz = List<User>.class ②获取局部变量泛型的类型 List<User> listUser = new ArrayList<User>(); Type genType = listUser.getClass().getClass().getGenericSuperc

  • Java8中lambda表达式的应用及一些泛型相关知识

    语法部分就不写了,我们直接抛出一个实际问题,看看java8的这些新特性究竟能给我们带来哪些便利 顺带用到一些泛型编程,一切都是为了简化代码 场景: 一个数据类,用于记录职工信息 public class Employee { public String name; public int age; public char sex; public String time; public int salary; } 我们有一列此类数据 List<Employee> data = Arrays.asL

  • 深入理解java泛型详解

    什么是泛型? 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样. 可以在集合框架(Collection framework)中看到泛型的动机.例如,Map 类允许您向一个 Map 添加任意类的对象,即使最常见的情况是在给定映射(map)中保存某个特定类型(比如 String)的对象. 因为 Map.get(

  • Java中的泛型详解

    所谓泛型:就是允许在定义类.接口指定类型形参,这个类型形参在将在声明变量.创建对象时确定(即传入实际的类型参数,也可称为类型实参) 泛型类或接口 "菱形"语法 复制代码 代码如下: //定义   public interface List<E> extends Collection<E>    public class HashMap<K,V> extends AbstractMap<K,V>  implements Map<K,V

  • 详解Java泛型中类型擦除问题的解决方法

    以前就了解过Java泛型的实现是不完整的,最近在做一些代码重构的时候遇到一些Java泛型类型擦除的问题,简单的来说,Java泛型中所指定的类型在编译时会将其去除,因此List 和 List 在编译成字节码的时候实际上是一样的.因此java泛型只能做到编译期检查的功能,运行期间就不能保证类型安全.我最近遇到的一个问题如下: 假设有两个bean类 /** Test. */ @Data @NoArgsConstructor @AllArgsConstructor public static class

  • 详解Java泛型及其应用

    引出泛型 我们通过如下的示例,引出为什么泛型的概念. public class Test { public static void main(String[] args) { List list = new ArrayList(); list.add("abc"); list.add(2); for (int i = 0; i < list.size(); i++) { String name = (String) list.get(i); // error System.out

  • 一看就懂 详解JAVA泛型通配符T,E,K,V区别

    1. 先解释下泛型概念 泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以用在类.接口和方法的创建中,分别称为泛型类.泛型接口.泛型方法.Java语言引入泛型的好处是安全简单. 在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的"任意化","任意化"带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的.对于强制类型转

  • 详解Java中的 枚举与泛型

    详解Java中的 枚举与泛型 一:首先从枚举开始说起 枚举类型是JDK5.0的新特征.Sun引进了一个全新的关键字enum来定义一个枚举类.下面就是一个典型枚举类型的定义: public enum Color{ RED,BLUE,BLACK,YELLOW,GREEN } 显然,enum很像特殊的class,实际上enum声明定义的类型就是一个类. 而这些类都是类库中Enum类的子类(Java.lang.Enum).它们继承了这个Enum中的许多有用的方法.我们对代码编译之后发现,编译器将 enu

  • 详解Java 中泛型的实现原理

    泛型是 Java 开发中常用的技术,了解泛型的几种形式和实现泛型的基本原理,有助于写出更优质的代码.本文总结了 Java 泛型的三种形式以及泛型实现原理. 泛型 泛型的本质是对类型进行参数化,在代码逻辑不关注具体的数据类型时使用.例如:实现一个通用的排序算法,此时关注的是算法本身,而非排序的对象的类型. 泛型方法 如下定义了一个泛型方法, 声明了一个类型变量,它可以应用于参数,返回值,和方法内的代码逻辑. class GenericMethod{ public <T> T[] sort(T[]

  • 详解Java中AbstractMap抽象类

    jdk1.8.0_144 下载地址:http://www.jb51.net/softs/551512.html AbstractMap抽象类实现了一些简单且通用的方法,本身并不难.但在这个抽象类中有两个方法非常值得关注,keySet和values方法源码的实现可以说是教科书式的典范. 抽象类通常作为一种骨架实现,为各自子类实现公共的方法.上一篇我们讲解了Map接口,此篇对AbstractMap抽象类进行剖析研究. Java中Map类型的数据结构有相当多,AbstractMap作为它们的骨架实现实

  • 详解Java 10 var关键字和示例教程

    关键要点 Java 10引入了一个闪亮的新功能:局部变量类型推断.对于局部变量,现在可以使用特殊的保留类型名称"var"代替实际类型. 提供这个特性是为了增强Java语言,并将类型推断扩展到局部变量的声明上.这样可以减少板代码,同时仍然保留Java的编译时类型检查. 由于编译器需要通过检查赋值等式右侧(RHS)来推断var的实际类型,因此在某些情况下,这个特性具有局限性,例如在初始化Array和Stream的时候. 如何使用新的"var"来减少样板代码. 在本文中,

  • 详解Java Callable接口实现多线程的方式

    在Java 1.5以前,创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口.无论我们以怎样的形式实现多线程,都需要调用Thread类中的start方法去向操作系统请求io,cup等资源.因为线程run方法没有返回值,如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. Callable和Future介

  • 详解Java ArrayList类

    ArrayList 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删除元素. ArrayList 继承了 AbstractList ,并实现了 List 接口. ArrayList 类位于 java.util 包中,使用前需要引入它,语法格式如下: import java.util.ArrayList; // 引入 ArrayList 类 ArrayList<E> objectName =new ArrayList<>(); // 初始化 E

  • 详解java Collections.sort的两种用法

    Collections是一个工具类,sort是其中的静态方法,是用来对List类型进行排序的,它有两种参数形式: public static <T extends Comparable<? super T>> void sort(List<T> list) { list.sort(null); } public static <T> void sort(List<T> list, Comparator<? super T> c) {

随机推荐