Python操作rabbitMQ的示例代码

引入

RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。

rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

中文文档

安装

# 安装配置epel源
  rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

# 安装erlang
  yum -y install erlang

# 安装RabbitMQ
  yum -y install rabbitmq-server

# 启动/停止
  service rabbitmq-server start/stop

rabbitMQ工作模型

简单模式

生产者

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',
           routing_key='hello',
           body='Hello World!')

print(" [x] Sent 'Hello World!'")
connection.close()

消费者

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)

channel.basic_consume( callback,
            queue='hello',
            no_ack=True)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

相关参数

1,no-ack = False

如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

  • 回调函数中的 ch.basic_ack(delivery_tag=method.delivery_tag)
  • basic_comsume中的no_ack=False

接收消息端应该这么写:


import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='10.211.55.4'))
channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,
           queue='hello',
           no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

2,durable :消息不丢失

生产者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello', durable=True)

channel.basic_publish(exchange='',
           routing_key='hello',
           body='Hello World!',
           properties=pika.BasicProperties(
             delivery_mode=2, # make message persistent
           ))
print(" [x] Sent 'Hello World!'")
connection.close()

3,消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,
           queue='hello',
           no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

exchange模型

1,发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

生产者

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
             type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
           routing_key='',
           body=message)
print(" [x] Sent %r" % message)
connection.close()

消费者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
             type='fanout')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

channel.queue_bind(exchange='logs',
          queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r" % body)

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

2,关键字发送

之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

exchange type = direct

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',
             type='direct')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]
if not severities:
  sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
  sys.exit(1)

for severity in severities:
  channel.queue_bind(exchange='direct_logs',
            queue=queue_name,
            routing_key=severity)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

3,模糊匹配

exchange type = topic

发送者路由值 队列中
old.boy.python old.* -- 不匹配
old.boy.python old.# -- 匹配

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',
             type='topic')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

binding_keys = sys.argv[1:]
if not binding_keys:
  sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
  sys.exit(1)

for binding_key in binding_keys:
  channel.queue_bind(exchange='topic_logs',
            queue=queue_name,
            routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

基于rabbitMQ的RPC

Callback queue 回调队列

一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址 reply_to

Correlation id 关联标识

一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有 correlation_id 属性,这样客户端在回调队列中根据 correlation_id 字段的值就可以分辨此响应属于哪个请求。

客户端发送请求:

某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务端工作流:

等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果:

客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

服务者

import pika

# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))

# 建立会话
channel = connection.channel()

# 声明RPC请求队列
channel.queue_declare(queue='rpc_queue')

# 数据处理方法
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)

# 对RPC请求队列中的请求进行处理
def on_request(ch, method, props, body):
  n = int(body)

  print(" [.] fib(%s)" % n)

  # 调用数据处理方法
  response = fib(n)

  # 将处理结果(响应)发送到回调队列
  ch.basic_publish(exchange='',
           routing_key=props.reply_to,
           properties=pika.BasicProperties(correlation_id = \
                             props.correlation_id),
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)

# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count=1)

channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")
channel.start_consuming()

客户端

import pika
import uuid

class FibonacciRpcClient(object):
  def __init__(self):
    """
    客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
    """
    # 建立连接,指定服务器的ip地址
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))

    # 建立一个会话,每个channel代表一个会话任务
    self.channel = self.connection.channel()

    # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
    result = self.channel.queue_declare(exclusive=True)
    # 将次队列指定为当前客户端的回调队列
    self.callback_queue = result.method.queue

    # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理;
    self.channel.basic_consume(self.on_response, no_ack=True,
                  queue=self.callback_queue)

  # 对回调队列中的响应进行处理的函数
  def on_response(self, ch, method, props, body):
    if self.corr_id == props.correlation_id:
      self.response = body

  # 发出RPC请求
  def call(self, n):

    # 初始化 response
    self.response = None

    #生成correlation_id
    self.corr_id = str(uuid.uuid4())

    # 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
    self.channel.basic_publish(exchange='',
                  routing_key='rpc_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     correlation_id = self.corr_id,
                     ),
                  body=str(n))

    while self.response is None:
      self.connection.process_data_events()
    return int(self.response)

# 建立客户端
fibonacci_rpc = FibonacciRpcClient()

# 发送RPC请求
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 利用Python学习RabbitMQ消息队列

    RabbitMQ可以当做一个消息代理,它的核心原理非常简单:即接收和发送消息,可以把它想象成一个邮局:我们把信件放入邮箱,邮递员就会把信件投递到你的收件人处,RabbitMQ就是一个邮箱.邮局.投递员功能综合体,整个过程就是:邮箱接收信件,邮局转发信件,投递员投递信件到达收件人处. RabbitMQ和邮局的主要区别就是RabbitMQ接收.存储和发送的是二进制数据----消息. rabbitmq基本管理命令: 一步启动Erlang node和Rabbit应用:sudo rabbitmq-serv

  • Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

    rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思.前面还有个rabbit单词,就是兔子的意思,和python语言叫python一样,老外还是蛮幽默的.rabbitmq服务类似于mysql.apache服务,只是提供的功能不一样.rabbimq是用来提供发送消息的服务,可以用在不同的应用程序之间进行通信. 安装rabbitmq 先来安装下rabbitmq,在ubuntu 12.04下可以直接通过apt-get安装: sudo apt-get insta

  • Python操作RabbitMQ服务器实现消息队列的路由功能

    Python使用Pika库(安装:sudo pip install pika)可以操作RabbitMQ消息队列服务器(安装:sudo apt-get install rabbitmq-server),这里我们来看一下MQ相关的路由功能. 路由键的实现 比如有一个需要给所有接收端发送消息的场景,但是如果需要自由定制,有的消息发给其中一些接收端,有些消息发送给另外一些接收端,要怎么办呢?这种情况下就要用到路由键了. 路由键的工作原理:每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键.发送

  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回

    先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4 RabbitMQ服务器 sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库 sudo pip install pika 远程结果返回 消息发送端发送消息出去后没有结果返回.如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端. 处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队

  • python RabbitMQ 使用详细介绍(小结)

    上节回顾 主要讲了协程.进程.异步IO多路复用. 协程和IO多路复用都是单线程的. epoll  在linux下通过这个模块libevent.so实现 gevent  在底层也是用了libevent.so gevent可以理解为一个更上层的封装. 使用select或者selectors,每接收或发送数据一次都要select一次 twisted异步网络框架,强大又庞大,不支持python3 (代码量python中排top3).几乎把所有的网络服务都重写了一遍. 一.RabbitMQ 消息队列介绍

  • Python队列RabbitMQ 使用方法实例记录

    本文实例讲述了Python队列RabbitMQ 使用方法.分享给大家供大家参考,具体如下: 目前的exchange的路由策略是:每个需要队列的服务独享一个队列(queue),消费者(consumer)采用ACK自动应答模式处理队列消息. 如果需要新增一个队列服务,需要做如下开发步骤: 1.创建队列,发送消息 <?php $routingkey = 'key'; //设置你的连接 $conn_args = array('host' => 'localhost', 'port' => '56

  • python实现RabbitMQ的消息队列的示例代码

    最近在研究redis做消息队列时,顺便看了一下RabbitMQ做消息队列的实现.以下是总结的RabbitMQ中三种exchange模式的实现,分别是fanout, direct和topic. base.py: import pika # 获取认证对象,参数是用户名.密码.远程连接时需要认证 credentials = pika.PlainCredentials("admin", "admin") # BlockingConnection(): 实例化连接对象 # C

  • Python RabbitMQ消息队列实现rpc

    上个项目中用到了ActiveMQ,只是简单应用,安装完成后直接是用就可以了.由于新项目中一些硬件的限制,需要把消息队列换成RabbitMQ. RabbitMQ中的几种模式和机制比ActiveMQ多多了,根据业务需要,使用RPC实现功能,其中踩过的一些坑,有必要记录一下了. 上代码,目录结构分为 c_server.c_client.c_hanlder: c_server: #!/usr/bin/env python # -*- coding:utf-8 -*- import pika import

  • python队列通信:rabbitMQ的使用(实例讲解)

    (一).前言 为什么引入消息队列? 1.程序解耦 2.提升性能 3.降低多业务逻辑复杂度 (二).python操作rabbit mq rabbitmq配置安装基本使用参见上节文章,不再复述. 若想使用python操作rabbitmq,需安装pika模块,直接pip安装: pip install pika 1.最简单的rabbitmq producer端与consumer端对话: producer: #Author :ywq import pika auth=pika.PlainCredentia

  • rabbitmq(中间消息代理)在python中的使用详解

    在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法.但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程.进程队列便不再适用了:此种情况便只能使用socket编程了,然而不同程序之间的通信便不再像线程进程之间的那么简单了,要考虑多种情况(比如其中一方断线另一方如何处理:消息群发,多个程序之间的通信等等),如果每遇到一次程序间的通信,便要根据不同情况编写不同的socket,还要维护.完善这个socket这会使得编程人员的工作量大大增加,也使得程序更易崩溃

  • 利用Python操作消息队列RabbitMQ的方法教程

    前言 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术.排队指的是应用程序通过 队列来通信.队列的使用除去了接收和发

随机推荐