Python的Flask框架应用调用Redis队列数据的方法

任务异步化
打开浏览器,输入地址,按下回车,打开了页面。于是一个HTTP请求(request)就由客户端发送到服务器,服务器处理请求,返回响应(response)内容。

我们每天都在浏览网页,发送大大小小的请求给服务器。有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情。

更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做。从事异步任务的工具有很多。主要原理还是处理通知消息,针对通知消息通常采取是队列结构。生产和消费消息进行通信和业务实现。

生产消费与队列
上述异步任务的实现,可以抽象为生产者消费模型。如同一个餐馆,厨师在做饭,吃货在吃饭。如果厨师做了很多,暂时卖不完,厨师就会休息;如果客户很多,厨师马不停蹄的忙碌,客户则需要慢慢等待。实现生产者和消费者的方式用很多,下面使用Python标准库Queue写个小例子:

import random
import time
from Queue import Queue
from threading import Thread

queue = Queue(10)

class Producer(Thread):
  def run(self):
    while True:
      elem = random.randrange(9)
      queue.put(elem)
      print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

class Consumer(Thread):
  def run(self):
    while True:
      elem = queue.get()
      print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

def main():
  for i in range(3):
    p = Producer()
    p.start()
  for i in range(2):
    c = Consumer()
    c.start()

if __name__ == '__main__':
  main()

大概输出如下:

厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完
厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完
吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃
吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃
吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃
厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完
吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃
厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完
吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃
吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃
厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完

Redis 队列
Python内置了一个好用的队列结构。我们也可以是用redis实现类似的操作。并做一个简单的异步任务。

Redis提供了两种方式来作消息队列。一个是使用生产者消费模式模式,另外一个方法就是发布订阅者模式。前者会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听。后者也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是ping的。

生产消费模式
主要使用了redis提供的blpop获取队列数据,如果队列没有数据则阻塞等待,也就是监听。

import redis

class Task(object):
  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.queue = 'task:prodcons:queue'

  def listen_task(self):
    while True:
      task = self.rcon.blpop(self.queue, 0)[1]
      print "Task get", task

if __name__ == '__main__':
  print 'listen task queue'
  Task().listen_task()

发布订阅模式
使用redis的pubsub功能,订阅者订阅频道,发布者发布消息到频道了,频道就是一个消息队列。

import redis

class Task(object):

  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.ps = self.rcon.pubsub()
    self.ps.subscribe('task:pubsub:channel')

  def listen_task(self):
    for i in self.ps.listen():
      if i['type'] == 'message':
        print "Task get", i['data']

if __name__ == '__main__':
  print 'listen task channel'
  Task().listen_task()

Flask 入口
我们分别实现了两种异步任务的后端服务,直接启动他们,就能监听redis队列或频道的消息了。简单的测试如下:

import redis
import random
import logging
from flask import Flask, redirect

app = Flask(__name__)

rcon = redis.StrictRedis(host='localhost', db=5)
prodcons_queue = 'task:prodcons:queue'
pubsub_channel = 'task:pubsub:channel'

@app.route('/')
def index():

  html = """
<br>
<center><h3>Redis Message Queue</h3>
<br>
<a href="/prodcons">生产消费者模式</a>
<br>
<br>
<a href="/pubsub">发布订阅者模式</a>
</center>
"""
  return html

@app.route('/prodcons')
def prodcons():
  elem = random.randrange(10)
  rcon.lpush(prodcons_queue, elem)
  logging.info("lpush {} -- {}".format(prodcons_queue, elem))
  return redirect('/')

@app.route('/pubsub')
def pubsub():
  ps = rcon.pubsub()
  ps.subscribe(pubsub_channel)
  elem = random.randrange(10)
  rcon.publish(pubsub_channel, elem)
  return redirect('/')

if __name__ == '__main__':
  app.run(debug=True)

启动脚本,使用

siege -c10 -r 5 http://127.0.0.1:5000/prodcons
siege -c10 -r 5 http://127.0.0.1:5000/pubsub

可以分别在监听的脚本输入中看到异步消息。在异步的任务中,可以执行一些耗时间的操作,当然目前这些做法并不知道异步的执行结果,如果需要知道异步的执行结果,可以考虑设计协程任务或者使用一些工具如RQ或者celery等。

(0)

相关推荐

  • python 队列详解及实例代码

    队列特性:先进先出(FIFO)--先进队列的元素先出队列.来源于我们生活中的队列(先排队的先办完事). Queue模块最常与threading模块一起构成生产-消费者模型,提供了一个适用于多线程编程的先进先出的数据结构,即队列. 该模块源码中包含5个类: 其中,Empty和Full是两个异常类,当队列的Queue.get(block=0)或者调用get_nowait()时,如果队列为空,则抛EmptyException异常. 同理,当队列的Queue.put(block=0)或者调用put_no

  • Python实现优先级队列结构的方法详解

    最简单的实现 一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序. #coding=utf-8 from heapq import heappush, heappop class PriorityQueue: def __init__(self): self._queue = [] def put(self, item, priority): heappush(self._queue, (-priority, item)) def get(

  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回

    先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4 RabbitMQ服务器 sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库 sudo pip install pika 远程结果返回 消息发送端发送消息出去后没有结果返回.如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端. 处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队

  • Python的消息队列包SnakeMQ使用初探

    一.关于snakemq的官方介绍 SnakeMQ的GitHub项目页:https://github.com/dsiroky/snakemq 1.纯python实现,跨平台 2.自动重连接 3.可靠发送--可配置的消息方式与消息超时方式 4.持久化/临时 两种队列 5.支持异步 -- poll() 6.symmetrical -- 单个TCP连接可用于双工通讯 7.多数据库支持 -- SQLite.MongoDB-- 8.brokerless - 类似ZeroMQ的实现原理 9.扩展模块:RPC,

  • Python 数据结构之队列的实现

    Python 队列 Queue 队列是一种先进先出(FIFO)的数据类型, 新的元素通过 入队 的方式添加进 Queue 的末尾, 出队 就是从 Queue 的头部删除元素. 用列表来做 Queue: queue = [] # 初始化一个列表数据类型对象, 作为一个队列 def enQ(): # 定义一个入栈方法 queue.append(raw_input('Enter New String: ').strip()) # 提示输入一个入队的 String 对象, 调用 Str.strip()

  • Python中线程的MQ消息队列实现以及消息队列的优点解析

    "消息队列"是在消息的传输过程中保存消息的容器.消息队列管理器在将消息从它的源中继到它的目标时充当中间人.队列的主要目的是提供路由并保证消息的传递:如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它.相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由: Python的消息队列示例: 1.threading+Queue实现线程队列 #!/usr/bin/env python import Queue import threading import

  • 详解Python的collections模块中的deque双端队列结构

    deque 是 double-ended queue的缩写,类似于 list,不过提供了在两端插入和删除的操作. appendleft 在列表左侧插入 popleft 弹出列表左侧的值 extendleft 在左侧扩展 例如: queue = deque() # append values to wait for processing queue.appendleft("first") queue.appendleft("second") queue.appendl

  • Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

    rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思.前面还有个rabbit单词,就是兔子的意思,和python语言叫python一样,老外还是蛮幽默的.rabbitmq服务类似于mysql.apache服务,只是提供的功能不一样.rabbimq是用来提供发送消息的服务,可以用在不同的应用程序之间进行通信. 安装rabbitmq 先来安装下rabbitmq,在ubuntu 12.04下可以直接通过apt-get安装: sudo apt-get insta

  • Python操作RabbitMQ服务器实现消息队列的路由功能

    Python使用Pika库(安装:sudo pip install pika)可以操作RabbitMQ消息队列服务器(安装:sudo apt-get install rabbitmq-server),这里我们来看一下MQ相关的路由功能. 路由键的实现 比如有一个需要给所有接收端发送消息的场景,但是如果需要自由定制,有的消息发给其中一些接收端,有些消息发送给另外一些接收端,要怎么办呢?这种情况下就要用到路由键了. 路由键的工作原理:每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键.发送

  • Python的Flask框架应用调用Redis队列数据的方法

    任务异步化 打开浏览器,输入地址,按下回车,打开了页面.于是一个HTTP请求(request)就由客户端发送到服务器,服务器处理请求,返回响应(response)内容. 我们每天都在浏览网页,发送大大小小的请求给服务器.有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情. 更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做.从事异步任务的工具有很多.

  • Python的Flask框架中配置多个子域名的方法讲解

    Flask子域名 一般用于数量比较少的子域名,一个模块对应一个子域名.先看下面一个例子: modules.py: from flask import Blueprint public = Blueprint('public', __name__) @public.route('/') def home(): return 'hello flask' app.py: app = Flask(__name__) app.config['SERVER_NAME'] = 'example.com' fr

  • Python基于Flask框架配置依赖包信息的项目迁移部署

    一般在本机上完成基于Flask框架的代码编写后,如果有接口或者数据操作方面需求需要把代码部署到指定服务器上. 一般情况下,使用Flask框架开发者大多数都是选择Python虚拟环境来运行项目,不同的虚拟环境中配置依赖包信息不同.如果重新迁移到一个新的虚拟环境后,又重新来一个一个的配置依赖包,那将会很浪费时间. 下面介绍一个简单易用的技巧,也是我自己在书本上看到的,以防每次配置需要翻阅书籍的麻烦,所以单自写一篇文章作记录,方便自己以后查看,也希望给其他学习的同学有点帮助. 完成项目相关代码编写后,

  • python的flask框架难学吗

    Flask框架难学吗?它和Django哪个更容易一些,这可能是学Python web开发的同学经常问的问题,下面来说一下flask框架. Flask是python的web框架,最大的特征是轻便,让开发者自由灵活的兼容要开发的feature. 为什么要从Flask开始学习web框架? 1.python语言的灵活性给予了Flask同样的特征: 2.无论是用户画像还是产品推荐,python相比其他语言都有极大的优势: 3.Flask轻便,容易上手,试错成本低. 所以,从搭建一个轻便的博客出发,既要容易

  • Python Flask框架开发之运用SocketIO实现WebSSH方法详解

    Flask 框架中如果想要实现WebSocket功能有许多种方式,运用SocketIO库来实现无疑是最简单的一种方式,Flask中封装了一个flask_socketio库该库可以直接通过pip仓库安装,如下内容将重点简述SocketIO库在Flask框架中是如何被应用的,最终实现WebSSH命令行终端功能,其可用于在Web浏览器内实现SSH命令行执行. 首先我们先来看一下SocketIO库是如何进行通信的,对于前端部分需要引入socket.io这个框架,然后就是利用该框架内提供的各类函数实现创建

  • python使用Flask框架获取用户IP地址的方法

    本文实例讲述了python使用Flask框架获取用户IP地址的方法.分享给大家供大家参考.具体如下: 下面的代码包含了html页面和python代码,非常详细,如果你正使用Flask,也可以学习一下最基本的Flask使用方法. python代码如下: from flask import Flask, render_template, request # Initialize the Flask application app = Flask(__name__) # Default route,

  • python中Flask框架简单入门实例

    本文实例讲述了python中Flask框架的简单用法.分享给大家供大家参考.具体如下: 使用Flask框架的简单入门范例代码,如果你正学习Flask框架,可以参考下面的启动代码,这段代码可以在网页上输出"hello world" import os # Using Flask since Python doesn't have built-in session management from flask import Flask, session app = Flask(__name_

  • Python使用Flask框架同时上传多个文件的方法

    本文实例讲述了Python使用Flask框架同时上传多个文件的方法,分享给大家供大家参考.具体如下: 下面的演示代码带有详细的html页面和python代码 import os # We'll render HTML templates and access data sent by POST # using the request object from flask. Redirect and url_for # will be used to redirect the user once t

  • Python使用Flask框架获取当前查询参数的方法

    本文实例讲述了Python使用Flask框架获取当前查询参数的方法.分享给大家供大家参考.具体如下: 这段代码实现Python的Flask框架下获取当前查询参数,即QueryString中的所有参数 from flask import Flask, render_template, request # Initialize the Flask application app = Flask(__name__) # This is a catch all route, to catch any r

  • Python使用flask框架操作sqlite3的两种方式

    本文实例讲述了Python使用flask框架操作sqlite3的两种方式.分享给大家供大家参考,具体如下: 方式一:raw_sql import sqlite3 from flask import Flask, request, jsonify app = Flask(__name__) DATABASE_URI = ":memory:" # 创建表格.插入数据 @app.before_first_request def create_db(): # 连接 conn = sqlite3

随机推荐