使用python matploblib库绘制准确率,损失率折线图

我就废话不多说了,大家还是直接看代码吧~

import matplotlib.pyplot as plt

epochs = [0,1,2,3]
acc = [4,8,6,5]
loss = [3,2,1,4]

plt.plot(epochs,acc,color='r',label='acc') # r表示红色
plt.plot(epochs,loss,color=(0,0,0),label='loss') #也可以用RGB值表示颜色

#####非必须内容#########
plt.xlabel('epochs') #x轴表示
plt.ylabel('y label') #y轴表示
plt.title("chart") #图标标题表示
plt.legend()  #每条折线的label显示
#######################
plt.savefig('test.jpg') #保存图片,路径名为test.jpg
plt.show()  #显示图片

补充知识:matplotlib画混淆矩阵和正确率曲线

混淆矩阵

找不到参看的那篇博客啦~~希望原博主不要讨伐我

#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['FangSong'] #可显示中文字符
plt.rcParams['axes.unicode_minus']=False

classes = ['a','b','c','d','e','f','g']
confusion_matrix = np.array([(99,1,2,2,0,0,6),(1,98,7,6,2,1,1),(0,0,86,0,0,2,0),(0,0,0,86,1,0,0),(0,0,0,1,94,1,0),(0,1,5,1,0,96,8),(0,0,0,4,3,0,85)],dtype=np.float64)

plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Oranges) #按照像素显示出矩阵
plt.title('混淆矩阵')
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=-45)
plt.yticks(tick_marks, classes)

thresh = confusion_matrix.max() / 2.
#iters = [[i,j] for i in range(len(classes)) for j in range((classes))]
#ij配对,遍历矩阵迭代器
iters = np.reshape([[[i,j] for j in range(7)] for i in range(7)],(confusion_matrix.size,2))
for i, j in iters:
 plt.text(j, i, format(confusion_matrix[i, j]),fontsize=7) #显示对应的数字

plt.ylabel('真实类别')
plt.xlabel('预测类别')
plt.tight_layout()
plt.show()

正确率曲线

  fig ,ax= plt.subplots()
  plt.plot(np.arange(iterations), fig_acc,'b')
  plt.plot(np.arange(iterations), fig_realacc, 'r')
  ax.set_xlabel('迭代次数')
  ax.set_ylabel('正确率(%)')

  labels = ["训练正确率", "测试正确率"]
  # labels = [l.get_label() for l in lns]
  plt.legend( labels, loc=7)
  plt.show()

以上这篇使用python matploblib库绘制准确率,损失率折线图就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用matplotlib绘制Logistic曲线操作示例

    本文实例讲述了Python使用matplotlib绘制Logistic曲线操作.分享给大家供大家参考,具体如下: 标准Logistic函数为: f(x) = 1 / ( 1 + exp(-x) ) 其导函数为: f'(x) = f(x) * ( 1 - f(x) ) 下面使用matplotlib绘制逻辑斯蒂函数及其导函数的曲线. Python代码: # -*- coding:utf-8 -*- #!python3 import numpy as np import matplotlib.pypl

  • 如何通过python画loss曲线的方法

    1. 首先导入一些python画图的包,读取txt文件,假设我现在有两个模型训练结果的records.txt文件 import numpy as np import matplotlib.pyplot as plt import pylab as pl from mpl_toolkits.axes_grid1.inset_locator import inset_axes data1_loss =np.loadtxt("valid_RCSCA_records.txt") data2_l

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • matplotlib 曲线图 和 折线图 plt.plot()实例

    我就废话不多说了,大家还是直接看代码吧! 绘制曲线: import time import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) y = np.sin(x) plt.figure(figsize=(6,4)) plt.plot(x,y,color="red",linewidth=1 ) plt.xlabel("x") #xlabel.ylabel:分别设置X.

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • 使用python matploblib库绘制准确率,损失率折线图

    我就废话不多说了,大家还是直接看代码吧~ import matplotlib.pyplot as plt epochs = [0,1,2,3] acc = [4,8,6,5] loss = [3,2,1,4] plt.plot(epochs,acc,color='r',label='acc') # r表示红色 plt.plot(epochs,loss,color=(0,0,0),label='loss') #也可以用RGB值表示颜色 #####非必须内容######### plt.xlabel(

  • Python turtle库绘制菱形的3种方式小结

    绘制一个菱形四边形,边长为 200 像素.方法1和2绘制了内角为60和120度的菱形,方法3绘制了内角为90度的菱形. 方法1‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‮‬‫ import turtle as t ls = [30,-30,-150,150]#菱形各边的画笔绝对角度列表 for i in range(4): t.seth(ls[i]) #画笔转向相应绝对角度 t.forward(2

  • 使用Python NumPy库绘制渐变图案

    目录 1. 导入模块 2. 基本绘画流程 3. 生成随机彩色图像 4. 生成渐变色图像 5. 在渐变色背景上画曲线 6. 使用颜色映射(ColorMap) 7. 展示NumPy的魅力 NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画得更好.画得更快!比如下面这幅画,只需要10行代码就可以画出来.若能整明白这10行代码,就意味着叩开了NumPy的大门.请打开你的Python IDLE,跟随我的脚步,一起来体验一下交互式编程的乐趣吧,看看如何用NumPy画图,以及用NumPy可以画出什么

  • Python tkinter库绘制春联和福字的示例详解

    马上要过年了,用 Python 写一副春联&福字送给大家,本文我们主要用到的 Python 库为 tkinter,下面一起来看一下具体实现. 首先,我们创建一个画布,代码实现如下: root=Tk() root.title('新年快乐') canvas=Canvas(root,width=500,height=460,bg='lightsalmon') 看一下效果: 我们接着写上联,主要代码实现如下: for i in range(0,451): canvas.create_rectangle(

  • python绘制散点图和折线图的方法

    本文实例为大家分享了python绘制散点图和折线图的具体代码,供大家参考,具体内容如下 #散点图,一般和相关分析.回归分析结合使用 import pandas import matplotlib import matplotlib.pyplot as plt   plot_circle=pandas.read_csv('D://Python projects//reference data//6.1//data.csv') #定义主题颜色 maincolor=(47/256,82/256,141

  • Python绘制交通流折线图详情

    目录 一.数据集下载 二.折线图绘制 1.解压npz文件 2.折线图绘制 一.数据集下载 加州高速公路PEMS数据集 这里绘制PEMS04中的交通流量数据.该数据集中包含旧金山2018年1月1日至2月28日的29条道路上307个探测器每五分钟收集的数据. 二.折线图绘制 1.解压npz文件 npz是一种numpy文件存储的压缩格式,可使用numpy进行读取. allow_pickle=True用于防止numpy版本过高带来的错误. data.files查看压缩文件下的所有文件. import n

  • Python 数据可视化超详细讲解折线图的实现

    绘制简单的折线图 在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可 使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作 import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show() # 打开matplotib

  • 基于Python实现将列表数据生成折线图

    目录 前言 代码 代码说明 验证效果 前言 本文提供python将列表数据画图的样例代码.主要是给自己的记录,顺便分享一下.主要使用到的库是:pandas.matplotlib. 代码 下面直接发一下样例代码. #!/user/bin/env python # coding=utf-8 """ @project : csdn @author : 剑客阿良_ALiang @file : draw_pic.py @ide : PyCharm @time : 2022-03-23

  • jQuery插件HighCharts绘制的基本折线图效果示例【附demo源码下载】

    本文实例讲述了jQuery插件HighCharts绘制的基本折线图效果.分享给大家供大家参考,具体如下: 1. 实例源码: <!DOCTYPE html> <html> <head> <title>HighCharts基本折线图</title> <meta charset="UTF-8"> <meta name="viewport" content="width=device-w

  • jQuery插件HighCharts绘制简单2D折线图效果示例【附demo源码】

    本文实例讲述了jQuery插件HighCharts绘制简单2D折线图效果.分享给大家供大家参考,具体如下: 1.实例代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>HighCharts 2D折线图</title> <script type="text/javascript" src="js/jquer

随机推荐