Java 线程池全面总结与详解

目录
  • 原理
  • 阻塞队列
  • 有界阻塞队列
  • 无界阻塞队列
  • 同步移交队列
  • 实现类分析
  • 使用Executors创建线程池
  • 线程池关闭

线程池是很常用的并发框架,几乎所有需要异步和并发处理任务的程序都可用到线程池。
使用线程池的好处如下:

  • 降低资源消耗:可重复利用已创建的线程池,降低创建和销毁带来的消耗;
  • 提高响应速度:任务到达时,可立即执行,无需等待线程创建;
  • 提高线程的可管理性:线程池可对线程统一分配、调优和监控。

原理

线程池的原理非常简单,这里用处理流程来概括:

  • 线程池判断核心池里的线程是否都在执行任务,如果不是,创建一个新的线程来执行任务;
  • 如果核心线程池已满,则将新任务存在工作队列中;
  • 如果工作队列满了,线程数量没有达到线程池上限的前提下,新建一个线程来执行任务;
  • 线程数量达到上限,则触发饱和策略来处理这个任务;

使用工作队列,是为了尽可能降低线程创建的开销。工作队列用阻塞队列来实现。

阻塞队列

阻塞队列(BlockingQueue)是指支持阻塞的插入和移除元素的队列。

  • 阻塞的插入:当队列满时,阻塞插入元素的线程,直到队列不满;
  • 阻塞的移除:当队列为空,阻塞移除元素的线程,直到队列不为空;

原理:使用通知者模式实现。当生产者往满的队列中添加元素时,会阻塞生产者。消费者移除元素时,会通知生产者当前队列可用。

阻塞队列有以下三种类型,分别是:

  • 有界阻塞队列:ArrayBlockingQueue(数组),LinkedBlockingQueue(链表)
  • 无界阻塞队列:LinkedTransferQueue(链表),PriorityBlockingQueue(支持优先级排序),DelayQueue(支持延时获取元素的无界阻塞队列)
  • 同步移交队列:SynchronousQueue

有界阻塞队列

主要包括ArrayBlockingQueue(数组),LinkedBlockingQueue(链表)两种。有界队列大小与线程数量大小相互配合,队列容量大线程数量小时,可减少上下文切换降低cpu使用率,但是会降低吞吐量。

无界阻塞队列

比较常用的是LinkedTransferQueue。FixedThreadPool就是用这个实现的。无界阻塞队列要慎重使用,因为在某些情况,可能会导致大量的任务堆积到队列中,导致内存飙升。

同步移交队列

SynchronousQueue。不存储元素的阻塞队列,每一个put操作必须等待一个take操作,否则不能继续添加元素。用于实现CachedThreadPool线程池。

各个线程池所使用的任务队列映射关系如下:

线程池阻塞队列

FixedThreadPoolLinkedBlockingQueueSingleThreadExecutorLinkedBlockingQueueCachedThreadExecutorSynchronousQueueScheduledThreadPoolExecutorLinkedBlockingQueue

实现类分析

ThreadPoolExecutor是Java线程池的实现类,是Executor接口派生出来的最核心的类。依赖关系图如下:

这里不得不提到Executor框架,该框架包含三大部分,如下:

  • 任务。被执行任务需要实现的接口:Runnable和Callable;
  • 任务执行。即上述核心接口Executor以及继承而来的ExecutorService。ExecutorService派生出如下两个类:ThreadPoolExecutor:线程池核心实现类;ScheduledThreadPoolExecutor:用来做定时任务;
  • 异步计算的结果。接口Future和实现Future接口的FutureTask类。线程池创建
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, milliseconds, runnableTaskQueue, handler)

构造方法如下:

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

参数说明:

  • corePoolSize:核心池的线程数量;
  • workQueue:用于保存任务的工作队列;
  • maximumPoolSize:最大线程池的大小;
  • keepAliveTime:当线程数量大于核心池线程数量时,keepAliveTime为多余的空闲线程等待新任务的最长时间,超过这个时间,多余的线程会被终止;
  • TimeUnit:keepAliveTime的单位;
  • ThreadFactory:线程工厂,可以给线程设置名字;
  • handler:饱和策略。当队列和线程池都满了,会触发饱和策略,来处理新提交的任务。饱和策略以下几种:AbortPolicy:直接抛出异常;CallerRunsPolicy:只用调用者所在线程来运行任务;DiscardOldestPolicy:丢弃最近一个任务并执行当前任务;DiscardPolicy:不处理,丢弃掉。

使用Executors创建线程池

使用工具类Executors可创建三种类型的线程池:FixedThreadPool、SingleThreadExecutor、CachedThreadPool。本质上也是调用上述构造方法。理解了前文的参数解释,下面三种线程池也就容易理解了。

FixedThreadPool

可重用固定线程数的线程池。

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

工作流程如下:

  • 如果当前运行的线程数少于corePoolSize,则创建新线程来执行任务;
  • 线程数等于corePoolSize之后,新任务加入LinkedBlockingQueue(无界阻塞队列)。因为最大线程数maximumPoolSize参数值等于corePoolSize,不会产生多余线程;
  • 线程执行完任务之后会反复从LinkedBlockingQueue中获取任务来执行。

SingleThreadExecutor

单个worker线程的线程池

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}

SingleThreadExecutor与FixedThreadPool的区别在于,maximumPoolSize和corePoolSize都设置成了1,其它参数都一样。

  • CachedThreadPool
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

CachedThreadPool将corePoolSize设置为0,maximumPoolSize设置为无限大,同时使用了一个没有容量的工作队列SynchronousQueue。这个线程池没有固定的核心线程,而是根据需要创建新线程。

工作流程:

  • 有新任务时,主线程执行SynchronousQueue.offer操作,空闲线程执行SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS)操作,配对成功则将任务交给空闲线程执行;
  • 当没有空闲线程时,上面的配对操作失败,此时会创建一个新线程来执行任务;
  • 任务执行完毕后,空闲线程会等待60秒。60秒内如果有新任务,就立即执行,否则时间一过线程就终止。

线程池关闭

调用shutdown或者shutdownNow方法可关闭线程池。原理是遍历线程池中所有工作线程,调用interrupt方法来中断线程。

  • shutdown:将线程置为SHUTDOWN状态,不能接受新的任务,等待所有任务执行完毕;
  • shutdownNow:将线程置为STOP状态,不能接受新的任务,尝试去终止正在执行的恶任务;

这里涉及到ThreadPoolExecutor中定义的线程的五种状态

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;
  • RUNNING:接受新任务,处理任务;
  • SHUTDOWN:不接受新任务,但会把队列中任务处理完;
  • STOP:不接受新任务,不处理队列中的任务,并且终止正在处理的任务;
  • TIDYING:正在执行的任务和队列都为空,进入该状态,将要执行terminated();
  • TERMINATED:所有terminated()方法执行完毕,线程池彻底终止。

当队列和正在执行的任务都为空时,由SHUTDOWN转化为TIDYING;当正在执行的任务为空,由STOP转化为TIDYING。

本博客从线程池的原理介绍作为切入点,分析了线程池中尤为关键的组件:阻塞队列。同时分析了线程池的核心实现类ThreadPoolExecutor。以线程池的创建和关闭的思路,梳理了相关知识点,包括三种常用线程池介绍以及线程池五种状态。

到此这篇关于Java 线程池全面总结与详解的文章就介绍到这了,更多相关Java 线程池内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java线程池由浅入深掌握到精通

    目录 1.为什么使用线程池? 2.线程池的好处: 3.线程池使用的场合 4.创建和停止线程 5.停止线程池的方法 6.暂停和恢复线程池 1.为什么使用线程池? 反复创建线程开销大,可以复用线程池 过多的线程会占用太多的内存 解决以上问题的方法: 用少量的线程,避免内存占用过多 让这部分线程都保持工作,且反复执行任务,避免生命周期的损耗 2.线程池的好处: 加快响应速度,提高用户体验 合理利用CPU内存 统一管理 3.线程池使用的场合 服务器接受大量请求时,使用线程池技术是非常合适的,它可以大大减

  • java中多线程与线程池的基本使用方法

    目录 前言 继承Thread 实现Runnale接口 Callable 线程池 常见的4种线程池. 总结 前言 在java中,如果每个请求到达就创建一个新线程,开销是相当大的.在实际使用中,服务器在创建和销毁线程上花费的时间和消耗的系统资源都相当大,甚至可能要比在处理实际的用户请求的时间和资源要多的多.除了创建和销毁线程的开销之外,活动的线程也需要消耗系统资源.如果在一个jvm里创建太多的线程,可能会使系统由于过度消耗内存或"切换过度"而导致系统资源不足.为了防止资源不足,服务器应用程

  • Java多线程 自定义线程池详情

    主要介绍: 1.任务队列 2.拒绝策略(抛出异常.直接丢弃.阻塞.临时队列) 3.init( min ) 4.active 5.max min<=active<=max package chapter13; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; public class SimpleThreadPool { public final static DiscardPolicy

  • java中线程池最实用的创建与关闭指南

    目录 前言 线程池创建 只需要执行shutdown就可以优雅关闭 执行shutdownNow关闭的测试 总结 前言 在日常的开发工作当中,线程池往往承载着一个应用中最重要的业务逻辑,因此我们有必要更多地去关注线程池的执行情况,包括异常的处理和分析等. 线程池创建 避免使用Executors创建线程池,主要是避免使用其中的默认实现,那么我们可以自己直接调用ThreadPoolExecutor的构造函数来自己创建线程池.在创建的同时,给BlockQueue指定容量就可以了. private stat

  • Java并发编程面试之线程池

    目录 什么是线程池 线程池好处 线程池的执行流程 怎么用线程池 corePoolSize maximumPoolSize keepAliveTime unit workQueue threadFactory ejectedExecutionHandler 线程池参数如何设置? 监控线程池 总结 什么是线程池 是一种基于池化思想管理线程的工具.池化技术:池化技术简单点来说,就是提前保存大量的资源,以备不时之需.比如我们的对象池,数据库连接池等. 线程池好处 我们为什么要使用线程池,直接new th

  • Java线程池的简单使用方法实例教程

    目录 线程池使用场景? Java线程池使用 总结 线程池使用场景? java中经常需要用到多线程来处理一些业务,我们非常不建议单纯使用继承Thread或者实现Runnable接口的方式来创建线程,那样势必有创建及销毁线程耗费资源.线程上下文切换问题.同时创建过多的线程也可能引发资源耗尽的风险,这个时候引入线程池比较合理,方便线程任务的管理.java中涉及到线程池的相关类均在jdk1.5开始的java.util.concurrent包中,涉及到的几个核心类及接口包括:Executor.Execut

  • 一文彻底搞懂java多线程和线程池

    目录 什么是线程 一. Java实现线程的三种方式 1.1.继承Thread类 1.2.实现Runnable接口,并覆写run方法 二. Callable接口 2.1 Callable接口 2.2 Future接口 2.3 Future实现类是FutureTask. 三. Java线程池 3.1.背景 3.2.作用 3.3.应用范围 四. Java 线程池框架Executor 4.1.类图: 4.2 核心类ThreadPoolExecutor: 4.3 ThreadPoolExecutor逻辑结

  • Java线程池FutureTask实现原理详解

    前言 线程池可以并发执行多个任务,有些时候,我们可能想要跟踪任务的执行结果,甚至在一定时间内,如果任务没有执行完成,我们可能还想要取消任务的执行,为了支持这一特性,ThreadPoolExecutor提供了 FutureTask 用于追踪任务的执行和取消.本篇介绍FutureTask的实现原理. 类视图 为了更好的理解FutureTask的实现原理,这里先提供几个重要接口和类的结构,如下图所示: RunnableAdapter ThreadPoolExecutor提供了submit接口用于提交任

  • Java 线程池全面总结与详解

    目录 原理 阻塞队列 有界阻塞队列 无界阻塞队列 同步移交队列 实现类分析 使用Executors创建线程池 线程池关闭 线程池是很常用的并发框架,几乎所有需要异步和并发处理任务的程序都可用到线程池. 使用线程池的好处如下: 降低资源消耗:可重复利用已创建的线程池,降低创建和销毁带来的消耗: 提高响应速度:任务到达时,可立即执行,无需等待线程创建: 提高线程的可管理性:线程池可对线程统一分配.调优和监控. 原理 线程池的原理非常简单,这里用处理流程来概括: 线程池判断核心池里的线程是否都在执行任

  • java线程池ThreadPoolExecutor类使用详解

    在<阿里巴巴java开发手册>中指出了线程资源必须通过线程池提供,不允许在应用中自行显示的创建线程,这样一方面是线程的创建更加规范,可以合理控制开辟线程的数量:另一方面线程的细节管理交给线程池处理,优化了资源的开销.而线程池不允许使用Executors去创建,而要通过ThreadPoolExecutor方式,这一方面是由于jdk中Executor框架虽然提供了如newFixedThreadPool().newSingleThreadExecutor().newCachedThreadPool(

  • Java线程池使用与原理详解

    线程池是什么? 我们可以利用java很容易创建一个新线程,同时操作系统创建一个线程也是一笔不小的开销.所以基于线程的复用,就提出了线程池的概念,我们使用线程池创建出若干个线程,执行完一个任务后,该线程会存在一段时间(用户可以设定空闲线程的存活时间,后面会介绍),等到新任务来的时候就直接复用这个空闲线程,这样就省去了创建.销毁线程损耗.当然空闲线程也会是一种资源的浪费(所有才有空闲线程存活时间的限制),但总比频繁的创建销毁线程好太多. 下面是我的测试代码 /* * @TODO 线程池测试 */ @

  • java并发编程_线程池的使用方法(详解)

    一.任务和执行策略之间的隐性耦合 Executor可以将任务的提交和任务的执行策略解耦 只有任务是同类型的且执行时间差别不大,才能发挥最大性能,否则,如将一些耗时长的任务和耗时短的任务放在一个线程池,除非线程池很大,否则会造成死锁等问题 1.线程饥饿死锁 类似于:将两个任务提交给一个单线程池,且两个任务之间相互依赖,一个任务等待另一个任务,则会发生死锁:表现为池不够 定义:某个任务必须等待池中其他任务的运行结果,有可能发生饥饿死锁 2.线程池大小 注意:线程池的大小还受其他的限制,如其他资源池:

  • java 可重启线程及线程池类的设计(详解)

    了解JAVA多线程编程的人都知道,要产生一个线程有两种方法,一是类直接继承Thread类并实现其run()方法:二是类实现Runnable接口并实现其run()方法,然后新建一个以该类为构造方法参数的Thread,类似于如下形式: Thread t=new Thread(myRunnable).而最终使线程启动都是执行Thread类的start()方法. 在JAVA中,一个线程一旦运行完毕,即执行完其run()方法,就不可以重新启动了.此时这个线程对象也便成了无用对象,等待垃圾回收器的回收.下次

  • Java多线程之线程池七个参数详解

    ThreadPoolExecutor是JDK中的线程池实现,这个类实现了一个线程池需要的各个方法,它提供了任务提交.线程管理.监控等方法. 下面是ThreadPoolExecutor类的构造方法源码,其他创建线程池的方法最终都会导向这个构造方法,共有7个参数:corePoolSize.maximumPoolSize.keepAliveTime.unit.workQueue.threadFactory.handler. public ThreadPoolExecutor(int corePoolS

  • Java实现手写线程池实例并测试详解

    前言 在之前的文章中介绍过线程池的核心原理,在一次面试中面试官让手写线程池,这块知识忘记的差不多了,因此本篇文章做一个回顾. 希望能够加深自己的印象以及帮助到其他的小伙伴儿们 在线程池核心原理篇介绍过线程池的核心原理,今天来模拟线程池和工作队列的流程,以及编写代码和测试类进行测试.下面附下之前线程池的核心流程: 在线程池核心原理的源码中,涉及到了一系列的流程,包括线程池队列数量是否已满,运用什么样的拒绝策略等.在我们手写线程池的代码中,不需要考虑那么多因素,只需要模拟简单的情景和过程,因此整体来

  • Java线程的生命周期的详解

    Java线程的生命周期的详解 对于多线程编程而言,理解线程的生命周期非常重要,本文就针对这一点进行讲解. 一.线程的状态 线程的存在有几种不同的状态,如下: New状态 Ready状态 Running状态 Dead状态 Non Runnable状态 1.New状态 New状态是线程已经被创建,但是还未开始运行的状态.此状态通过调用线程的start()方法可让线程运行. 2.Runnable状态 Runnable状态可称为准备运行状态,也可称为队列,此状态通过调用线程的start()方法可让线程运

  • 基于java 线程的几种状态(详解)

    线程可以有六种状态: 1.New(新创建) 2.Runnable(可运行)(运行) 3.Blocked(被阻塞) 4.Waiting(等待) 5.Timed waiting(计时等待) 6.Terminated(被终止) 新创建线程: 当用new操作符创建一个新线程时,如new Thread(r),该线程还没有开始运行,它的当前状态为new,在线程运行之前还有一些基础工作要做. 可运行线程: 一旦线程调用start方法,线程处于runnable状态.在这个状态下的线程可能正在运行也可能没有运行(

随机推荐