Go语言设计模式之结构型模式

目录
  • 一、组合模式(Composite Pattern)
    • 1.1、简述
    • 1.2、Go实现
  • 二、适配器模式(Adapter Pattern)
    • 2.1、简述
    • 2.2、Go实现
  • 三、桥接模式(Bridge Pattern)
    • 3.1、简述
    • 3.2、Go实现
  • 四、总结

一、组合模式(Composite Pattern)

1.1、简述

在面向对象编程中,有两个常见的对象设计方法,组合和继承,两者都可以解决代码复用的问题,但是使用后者时容易出现继承层次过深,对象关系过于复杂的副作用,从而导致代码的可维护性变差。因此,一个经典的面向对象设计原则是:组合优于继承。

我们都知道,组合所表示的语义为“has-a”,也就是部分和整体的关系,最经典的组合模式描述如下:

将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。

Go语言天然就支持了组合模式,而且从它不支持继承关系的特点来看,Go也奉行了组合优于继承的原则,鼓励大家在进行程序设计时多采用组合的方法。Go实现组合模式的方式有两种,分别是直接组合(Direct Composition)和嵌入组合(Embedding Composition),下面我们一起探讨这两种不同的实现方法。

1.2、Go实现

直接组合(Direct Composition)的实现方式类似于Java/C++,就是将一个对象作为另一个对象的成员属性。

一个典型的实现如《使用Go实现GoF的23种设计模式(一)》中所举的例子,一个Message结构体,由Header和Body所组成。那么Message就是一个整体,而Header和Body则为消息的组成部分。

type Message struct {
    Header *Header
    Body   *Body
}

现在,我们来看一个稍微复杂一点的例子,同样考虑上一篇文章中所描述的插件架构风格的消息处理系统。前面我们用抽象工厂模式解决了插件加载的问题,通常,每个插件都会有一个生命周期,常见的就是启动状态和停止状态,现在我们使用组合模式来解决插件的启动和停止问题。

首先给Plugin接口添加几个生命周期相关的方法:

package plugin
...
// 插件运行状态
type Status uint8

const (
    Stopped Status = iota
    Started
)

type Plugin interface {
  // 启动插件
    Start()
  // 停止插件
    Stop()
  // 返回插件当前的运行状态
    Status() Status
}
// Input、Filter、Output三类插件接口的定义跟上一篇文章类似
// 这里使用Message结构体替代了原来的string,使得语义更清晰
type Input interface {
    Plugin
    Receive() *msg.Message
}

type Filter interface {
    Plugin
    Process(msg *msg.Message) *msg.Message
}

type Output interface {
    Plugin
    Send(msg *msg.Message)
}

对于插件化的消息处理系统而言,一切皆是插件,因此我们将Pipeine也设计成一个插件,实现Plugin接口:

package pipeline
...
// 一个Pipeline由input、filter、output三个Plugin组成
type Pipeline struct {
    status plugin.Status
    input  plugin.Input
    filter plugin.Filter
    output plugin.Output
}

func (p *Pipeline) Exec() {
    msg := p.input.Receive()
    msg = p.filter.Process(msg)
    p.output.Send(msg)
}
// 启动的顺序 output -> filter -> input
func (p *Pipeline) Start() {
    p.output.Start()
    p.filter.Start()
    p.input.Start()
    p.status = plugin.Started
    fmt.Println("Hello input plugin started.")
}
// 停止的顺序 input -> filter -> output
func (p *Pipeline) Stop() {
    p.input.Stop()
    p.filter.Stop()
    p.output.Stop()
    p.status = plugin.Stopped
    fmt.Println("Hello input plugin stopped.")
}

func (p *Pipeline) Status() plugin.Status {
    return p.status
}

一个Pipeline由Input、Filter、Output三类插件组成,形成了“部分-整体”的关系,而且它们都实现了Plugin接口,这就是一个典型的组合模式的实现。Client无需显式地启动和停止Input、Filter和Output插件,在调用Pipeline对象的Start和Stop方法时,Pipeline就已经帮你按顺序完成对应插件的启动和停止。

相比于上一篇文章,在本文中实现Input、Filter、Output三类插件时,需要多实现3个生命周期的方法。还是以上一篇文章中的HelloInput、UpperFilter和ConsoleOutput作为例子,具体实现如下:

package plugin
...
type HelloInput struct {
    status Status
}

func (h *HelloInput) Receive() *msg.Message {
  // 如果插件未启动,则返回nil
    if h.status != Started {
        fmt.Println("Hello input plugin is not running, input nothing.")
        return nil
    }
    return msg.Builder().
        WithHeaderItem("content", "text").
        WithBodyItem("Hello World").
        Build()
}

func (h *HelloInput) Start() {
    h.status = Started
    fmt.Println("Hello input plugin started.")
}

func (h *HelloInput) Stop() {
    h.status = Stopped
    fmt.Println("Hello input plugin stopped.")
}

func (h *HelloInput) Status() Status {
    return h.status
}
package plugin
...
type UpperFilter struct {
    status Status
}

func (u *UpperFilter) Process(msg *msg.Message) *msg.Message {
    if u.status != Started {
        fmt.Println("Upper filter plugin is not running, filter nothing.")
        return msg
    }
    for i, val := range msg.Body.Items {
        msg.Body.Items[i] = strings.ToUpper(val)
    }
    return msg
}

func (u *UpperFilter) Start() {
    u.status = Started
    fmt.Println("Upper filter plugin started.")
}

func (u *UpperFilter) Stop() {
    u.status = Stopped
    fmt.Println("Upper filter plugin stopped.")
}

func (u *UpperFilter) Status() Status {
    return u.status
}

package plugin
...
type ConsoleOutput struct {
    status Status
}

func (c *ConsoleOutput) Send(msg *msg.Message) {
    if c.status != Started {
        fmt.Println("Console output is not running, output nothing.")
        return
    }
    fmt.Printf("Output:\n\tHeader:%+v, Body:%+v\n", msg.Header.Items, msg.Body.Items)
}

func (c *ConsoleOutput) Start() {
    c.status = Started
    fmt.Println("Console output plugin started.")
}

func (c *ConsoleOutput) Stop() {
    c.status = Stopped
    fmt.Println("Console output plugin stopped.")
}

func (c *ConsoleOutput) Status() Status {
    return c.status
}

测试代码如下:

package test
...
func TestPipeline(t *testing.T) {
    p := pipeline.Of(pipeline.DefaultConfig())
    p.Start()
    p.Exec()
    p.Stop()
}
// 运行结果
=== RUN   TestPipeline
Console output plugin started.
Upper filter plugin started.
Hello input plugin started.
Pipeline started.
Output:
    Header:map[content:text], Body:[HELLO WORLD]
Hello input plugin stopped.
Upper filter plugin stopped.
Console output plugin stopped.
Hello input plugin stopped.
--- PASS: TestPipeline (0.00s)
PASS

组合模式的另一种实现,嵌入组合(Embedding Composition),其实就是利用了Go语言的匿名成员特性,本质上跟直接组合是一致的。

还是以Message结构体为例,如果采用嵌入组合,则看起来像是这样:

type Message struct {
    Header
    Body
}
// 使用时,Message可以引用Header和Body的成员属性,例如:
msg := &Message{}
msg.SrcAddr = "192.168.0.1"

二、适配器模式(Adapter Pattern)

2.1、简述

适配器模式是最常用的结构型模式之一,它让原本因为接口不匹配而无法一起工作的两个对象能够一起工作。在现实生活中,适配器模式也是处处可见,比如电源插头转换器,可以让英式的插头工作在中式的插座上。适配器模式所做的就是将一个接口Adaptee,通过适配器Adapter转换成Client所期望的另一个接口Target来使用,实现原理也很简单,就是Adapter通过实现Target接口,并在对应的方法中调用Adaptee的接口实现。

一个典型的应用场景是,系统中一个老的接口已经过时即将废弃,但因为历史包袱没法立即将老接口全部替换为新接口,这时可以新增一个适配器,将老的接口适配成新的接口来使用。适配器模式很好的践行了面向对象设计原则里的开闭原则(open/closed principle),新增一个接口时也无需修改老接口,只需多加一个适配层即可。

2.2、Go实现

继续考虑上一节的消息处理系统例子,目前为止,系统的输入都源自于HelloInput,现在假设需要给系统新增从Kafka消息队列中接收数据的功能,其中Kafka消费者的接口如下:

package kafka
...
type Records struct {
    Items []string
}

type Consumer interface {
    Poll() Records
}

由于当前Pipeline的设计是通过plugin.Input接口来进行数据接收,因此kafka.Consumer并不能直接集成到系统中。

怎么办?使用适配器模式!

为了能让Pipeline能够使用kafka.Consumer接口,我们需要定义一个适配器如下:

package plugin
...
type KafkaInput struct {
    status Status
    consumer kafka.Consumer
}

func (k *KafkaInput) Receive() *msg.Message {
    records := k.consumer.Poll()
    if k.status != Started {
        fmt.Println("Kafka input plugin is not running, input nothing.")
        return nil
    }
    return msg.Builder().
        WithHeaderItem("content", "text").
        WithBodyItems(records.Items).
        Build()
}

// 在输入插件映射关系中加入kafka,用于通过反射创建input对象
func init() {
    inputNames["hello"] = reflect.TypeOf(HelloInput{})
    inputNames["kafka"] = reflect.TypeOf(KafkaInput{})
}
...

因为Go语言并没有构造函数,如果按照上一篇文章中的抽象工厂模式来创建KafkaInput,那么得到的实例中的consumer成员因为没有被初始化而会是nil。因此,需要给Plugin接口新增一个Init方法,用于定义插件的一些初始化操作,并在工厂返回实例前调用。

package plugin
...
type Plugin interface {
    Start()
    Stop()
    Status() Status
    // 新增初始化方法,在插件工厂返回实例前调用
    Init()
}

// 修改后的插件工厂实现如下
func (i *InputFactory) Create(conf Config) Plugin {
    t, _ := inputNames[conf.Name]
    p := reflect.New(t).Interface().(Plugin)
  // 返回插件实例前调用Init函数,完成相关初始化方法
    p.Init()
    return p
}

// KakkaInput的Init函数实现
func (k *KafkaInput) Init() {
    k.consumer = &kafka.MockConsumer{}
}

上述代码中的kafka.MockConsumer为我们模式Kafka消费者的一个实现,代码如下:

package kafka
...
type MockConsumer struct {}

func (m *MockConsumer) Poll() *Records {
    records := &Records{}
    records.Items = append(records.Items, "i am mock consumer.")
    return records
}

测试代码如下:

package test
...
func TestKafkaInputPipeline(t *testing.T) {
    config := pipeline.Config{
        Name: "pipeline2",
        Input: plugin.Config{
            PluginType: plugin.InputType,
            Name:       "kafka",
        },
        Filter: plugin.Config{
            PluginType: plugin.FilterType,
            Name:       "upper",
        },
        Output: plugin.Config{
            PluginType: plugin.OutputType,
            Name:       "console",
        },
    }
    p := pipeline.Of(config)
    p.Start()
    p.Exec()
    p.Stop()
}
// 运行结果
=== RUN   TestKafkaInputPipeline
Console output plugin started.
Upper filter plugin started.
Kafka input plugin started.
Pipeline started.
Output:
    Header:map[content:kafka], Body:[I AM MOCK CONSUMER.]
Kafka input plugin stopped.
Upper filter plugin stopped.
Console output plugin stopped.
Pipeline stopped.
--- PASS: TestKafkaInputPipeline (0.00s)
PASS

三、桥接模式(Bridge Pattern)

3.1、简述

桥接模式主要用于将抽象部分和实现部分进行解耦,使得它们能够各自往独立的方向变化。它解决了在模块有多种变化方向的情况下,用继承所导致的类爆炸问题。举一个例子,一个产品有形状和颜色两个特征(变化方向),其中形状分为方形和圆形,颜色分为红色和蓝色。如果采用继承的设计方案,那么就需要新增4个产品子类:方形红色、圆形红色、方形蓝色、圆形红色。如果形状总共有m种变化,颜色有n种变化,那么就需要新增m*n个产品子类!现在我们使用桥接模式进行优化,将形状和颜色分别设计为一个抽象接口独立出来,这样需要新增2个形状子类:方形和圆形,以及2个颜色子类:红色和蓝色。同样,如果形状总共有m种变化,颜色有n种变化,总共只需要新增m+n个子类!

上述例子中,我们通过将形状和颜色抽象为一个接口,使产品不再依赖于具体的形状和颜色细节,从而达到了解耦的目的。桥接模式本质上就是面向接口编程,可以给系统带来很好的灵活性和可扩展性。如果一个对象存在多个变化的方向,而且每个变化方向都需要扩展,那么使用桥接模式进行设计那是再合适不过了。

3.2、Go实现

回到消息处理系统的例子,一个Pipeline对象主要由Input、Filter、Output三类插件组成(3个特征),因为是插件化的系统,不可避免的就要求支持多种Input、Filter、Output的实现,并能够灵活组合(有多个变化的方向)。显然,Pipeline就非常适合使用桥接模式进行设计,实际上我们也这么做了。我们将Input、Filter、Output分别设计成一个抽象的接口,它们按照各自的方向去扩展。Pipeline只依赖的这3个抽象接口,并不感知具体实现的细节。

package plugin
...
type Input interface {
    Plugin
    Receive() *msg.Message
}

type Filter interface {
    Plugin
    Process(msg *msg.Message) *msg.Message
}

type Output interface {
    Plugin
    Send(msg *msg.Message)
}
package pipeline
...
// 一个Pipeline由input、filter、output三个Plugin组成
type Pipeline struct {
    status plugin.Status
    input  plugin.Input
    filter plugin.Filter
    output plugin.Output
}
// 通过抽象接口来使用,看不到底层的实现细节
func (p *Pipeline) Exec() {
    msg := p.input.Receive()
    msg = p.filter.Process(msg)
    p.output.Send(msg)
}

测试代码如下:

package test
...
func TestPipeline(t *testing.T) {
    p := pipeline.Of(pipeline.DefaultConfig())
    p.Start()
    p.Exec()
    p.Stop()
}
// 运行结果
=== RUN   TestPipeline
Console output plugin started.
Upper filter plugin started.
Hello input plugin started.
Pipeline started.
Output:
    Header:map[content:text], Body:[HELLO WORLD]
Hello input plugin stopped.
Upper filter plugin stopped.
Console output plugin stopped.
Pipeline stopped.
--- PASS: TestPipeline (0.00s)
PASS

四、总结

本文主要介绍了结构型模式中的组合模式、适配器模式和桥接模式。组合模式主要解决代码复用的问题,相比于继承关系,组合模式可以避免继承层次过深导致的代码复杂问题,因此面向对象设计领域流传着组合优于继承的原则,而Go语言的设计也很好实践了该原则;适配器模式可以看作是两个不兼容接口之间的桥梁,可以将一个接口转换成Client所希望的另外一个接口,解决了模块之间因为接口不兼容而无法一起工作的问题;桥接模式将模块的抽象部分和实现部分进行分离,让它们能够往各自的方向扩展,从而达到解耦的目的。

以上就是Go语言设计模式之结构型模式的详细内容,更多关于Go结构型模式的资料请关注我们其它相关文章!

(0)

相关推荐

  • 浅谈django三种缓存模式的使用及注意点

    django是动态网页,一般来说需要实时的生成访问的页面,展示给访问者,这样,内容可以随时变化,也就说请求到达视图函数之后,然后进行模板渲染,将字符串返回给用户,用户会看到相应的html页面.但是如果每次请求都从数据库中请求并获取数据,并且当用户并发量十分大的时候,这将服务器性能将大大受到影响.因此使用缓存能有效的解决这类问题.如果能将渲染后的结果放到速度更快的缓存中,每次有请求过来,先检查缓存中是否有对应的资源,如果有,直接从缓存中取出来返回响应,节省取数据和渲染的时间,不仅能大大提高系统性能

  • 浅谈django开发者模式中的autoreload是如何实现的

    在开发django应用的过程中,使用开发者模式启动服务是特别方便的一件事,只需要 python manage.py runserver 就可以运行服务,并且提供了非常人性化的autoreload机制,不需要手动重启程序就可以修改代码并看到反馈.刚接触的时候觉得这个功能比较人性化,也没觉得是什么特别高大上的技术.后来有空就想着如果是我来实现这个autoreload会怎么做,想了很久没想明白,总有些地方理不清楚,看来第一反应真是眼高手低了.于是就专门花了一些时间研究了django是怎样实现autor

  • 如何使用django的MTV开发模式返回一个网页

    1.MTV开发模式介绍 M:Models 模型(数据) 与数据组织相关的功能.组织和存储数据的方法和模式,与数据模型相关的操作. T:Templates 模板(样式) 与表现相关的所有功能.页面展示风格和方式,与具体数据分离,用于定义表现风格. V:Views 视图(处理) 针对请求选取数据的功能.选择哪些数据用于展示,指定显示模板,每个URL对应一个回调函数. 2.新建一个应用 在django最快程序开发流程上继续改进. python manage.py startapp hello2app

  • 详解用Go语言实现工厂模式(Golang经典编程案例)

    golang中的struct没有构造函数,一般可以使用工厂模式来解决这个问题.这个模式本身很简单而且使用在业务较简单的情况下.一般用于小项目或者具体产品很少扩展的情况(这样工厂类才不用经常更改). 代码结构如下:分别有main.go和student.go两个文件. 在student.go中: package model //定义一个结构体 type student struct{ Name string score float64 } //因为student结构体首字母是小写,因此是只能在mod

  • go语言单例模式(Singleton)实例分析

    本文实例讲述了go语言单例模式(Singleton)用法.分享给大家供大家参考.具体分析如下: 单例模式(Singleton):表示一个类只会生成唯一的一个对象.单例模式具有如下性质: A.这些类只能有一个实例: B.这些能够自动实例化: C.这个类对整个系统可见,即必须向整个系统提供这个实例. 复制代码 代码如下: package singleton import "fmt" var _instance *object type object struct {     name st

  • 详解Django的MVT设计模式

    经典的MVC设计模式及其优点 MVC即 Model-View-Controller(模型-视图-控制器) ,是经典的软件开发设计模式. **Model (模型) **: 简而言之即数据模型.模型不是数据本身(比如数据库里的数据),而是抽象的描述数据的构成和逻辑关系.通常模型包括了数据表的各个字段(比如人的年龄和出生日期)和相互关系(单对单,单对多关系等).Web开发框架会根据模型的定义来自动生成数据表. View (视图): 主要用于显示数据,用来展示用户可以看到的内容或提供用户可以输入或操作的

  • Go语言设计模式之结构型模式

    目录 一.组合模式(Composite Pattern) 1.1.简述 1.2.Go实现 二.适配器模式(Adapter Pattern) 2.1.简述 2.2.Go实现 三.桥接模式(Bridge Pattern) 3.1.简述 3.2.Go实现 四.总结 一.组合模式(Composite Pattern) 1.1.简述 在面向对象编程中,有两个常见的对象设计方法,组合和继承,两者都可以解决代码复用的问题,但是使用后者时容易出现继承层次过深,对象关系过于复杂的副作用,从而导致代码的可维护性变差

  • 结合ES6 编写 JavaScript 设计模式中的结构型模式

    目录 前言 什么是设计模式? 结构型设计模式 适配器模式 实例 桥接模式 实例 组合模式 实例 装饰者模式 实例 门面模式 实例 享元模式 实例 代理模式 实例 前言 本文将对 20 多种 JavaScript 设计模式进行简单概述,然后结合 ES6 类的方式来编写实例代码展示其使用方式. JavaScript 在现代前端中扮演重要的角色,相比过去能够做的事情已经不在一个级别上了.JavaScript 最大的特征是其灵活性,一般只要敢想敢写,可以把程序写得很简单,有可以写得很复杂.其灵活性导致编

  • Java 中桥接模式——对象结构型模式的实例详解

    Java  中桥接模式--对象结构型模式的实例详解 一.意图 将抽象部分与它的实现部分分离,使他们都可以独立的变化. 二.适用性 以下一些情况使用Bridge模式 你不希望在抽象和它的实现部分之间有一个固定的绑定关系.例如这种情况可能因为,在程序运行时刻实现部分应可以被选择或者切换. 类的抽象以及它的实现都应该可以通过生成子类的方法加以扩充.这时Bridge模式使你可以对不同的抽象接口和实现部分进行组合,并分别对他们进行扩充. 对一个抽象的实现部分的修改应对客户不产生影响,即客户代码不必重新编译

  • Java  中桥接模式——对象结构型模式的实例详解

    Java  中桥接模式--对象结构型模式的实例详解 一.意图 将抽象部分与它的实现部分分离,使他们都可以独立的变化. 二.适用性 以下一些情况使用Bridge模式 你不希望在抽象和它的实现部分之间有一个固定的绑定关系.例如这种情况可能因为,在程序运行时刻实现部分应可以被选择或者切换. 类的抽象以及它的实现都应该可以通过生成子类的方法加以扩充.这时Bridge模式使你可以对不同的抽象接口和实现部分进行组合,并分别对他们进行扩充. 对一个抽象的实现部分的修改应对客户不产生影响,即客户代码不必重新编译

  • js设计模式之结构型享元模式详解

    运用共享技术有效地支持大量的细粒度的对象,避免对象间拥有相同内容造成多余的开销. 享元模式主要是对其数据.方法共享分离,将数据和方法分成内部数据.内部方法和外部数据.外部方法.内部方法与内部数据指的是相似或共有的数据和方法,所以将其提取出来减少开销. var Flyweight = function() { // 已创建的元素 var created = []; // 创建一个新闻包装容器 function create() { var dom = document.createElement(

  • 浅谈JAVA设计模式之享元模式

    享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式. 享元模式尝试重用现有的同类对象,如果未找到匹配的对象,则创建新对象.我们将通过创建 5 个对象来画出 20 个分布于不同位置的圆来演示这种模式.由于只有 5 种可用的颜色,所以 color 属性被用来检查现有的 Circle 对象. 介绍 意图: 运用共享技术有效地支持大量细粒度的对象. 主要解决: 在有大量

  • Java设计模式之装饰者模式详解

    目录 具体代码: Person: Student: Doctor: DecoratePerson: ShoeDecorate: DressDecorate: 总结 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 以一个Person对象为例.Person作为一个接口,Student(学生)和Doctor(医生)为Person接口的两个具体类,DecoratorPerson为Pers

  • Java设计模式中的组合模式

    目录 模式介绍 UML类图 组合模式案例 组合模式的注意事项和细节 模式介绍 组合模式(Composite Pattern),又叫部分整体模式,它创建了对象组的树形结构,将对象组合成树状结构以表示“整体_部分”的层次关系. 组合模式依据树形结构来组合对象,用来表示部分以及整体层次. 这种类型的设计模式属于结构型模式. 组合模式使得用户对单个对象和组合对象的访问具有一致性,即:组合能让客户以一-致的方式处理个别对象以及组合对象 UML类图 类图解析: Component :这是组合中对象声明接口,

  • Java设计模式之装饰器模式

    本文由老王将建好的书房计划请小王来帮忙,小王却想谋权篡位,老王通过教育他引出装饰器设计模式,第二部分针对老王提出的建设性意见实现装饰器模式,第三部分针对装饰器模式在Jdk中的IO.Spring中的缓存管理器.Mybatis的运用来加强我们的理解,第四部分说明装饰器模式和代理模式的区别及他们各自的应用场景. 读者可以拉取完整代码到本地进行学习,实现代码均测试通过后上传到码云,本地源码下载. 一.引出问题 上篇文章(Java设计模式之组合模式)对老王的书架改造以后,老王是相当的满意,看小王能力突出,

  • .Net结构型设计模式之代理模式(Proxy)

    目录 一.动机(Motivate) 二.意图(Intent) 三.结构图(Structure) 四.模式的组成 五.代理模式的分类: 六.代理模式的具体实现 七.代理模式的实现要点: 1.代理模式的优点: 2.代理模式的缺点: 3.代理模式的使用场景: 八..NET 中代理模式的实现 九.总结 一.动机(Motivate) 在面向对象系统中,有些对象由于某种原因(比如对象创建的开销很大,或者某些操作需要安全控制,或者需要进程外的访问等),直接访问会给使用者.或者系统结构带来很多麻烦.如何在不失去

随机推荐