OpenCV-Python实现油画效果的实例

油画的实现原理

油画简单的理解是带有艺术感的图像,色彩相对于原图要更加鲜艳,但却是失真的。

而且对于喜欢欣赏艺术的读者,肯定或多或少关注过油画,油画并不细腻,而且小部分因为色块的堆积非常模糊。所以,我们实现油画的原理是:逐行对图像进行处理,使周围相邻距离的像素进行打乱。

至于打乱的算法,你可以随机设计。不过,需要注意的是在处理到图像边缘时,比如左下角最后一个像素,那么如果打乱其像素,取右边的显然不可取,因为右边没有像素会导致数组越界。所以在处理油画时,可以人为的剪掉部分边缘像素用于混淆。

还有,油画因为用色大胆,所以我们需要增强图像的色彩空间。而python的PIL库有一个现成的类ImageEnhance。该类专门用于图像的增强处理,不仅可以增强图像的亮度,对比度,色度,还可以增强图像的锐度,因此我们实现油画可以通过它快速实现图像增强的操作。

下面,我们来看看其图像增强如何实现。代码如下:

enh_col=ImageEnhance.Color(img)
color = 2.0
new_img = enh_col.enhance(color)

此处的img是PIL读取的图片,如果想PIL读取图片转到OpenCV读取图片的格式可以通过如下代码完成:

new_img = cv2.cvtColor(np.asarray(new_img), cv2.COLOR_RGB2BGR)

其中,new_img为PIL读取的图片格式。

而enhance函数的参数color代表了图像色彩的丰富程度和饱和度,数值为1时保持色度不变,数值增加表示色度比例增加,以此达到图像增强的效果。

实现油画效果

既然已经了解了实现油画效果的原理。下面,我们直接上代码来完成油画的操作。具体代码如下所示:

# 油画效果
def oil_effect(img):
    h, w, n = img.shape
    new_img = np.zeros((h - 2, w, n), dtype=np.uint8)
    for i in range(h - 2):
        for j in range(w):
            if random.randint(1, 10) % 3 == 0:
                new_img[i, j] = img[i - 1, j]
            elif random.randint(1, 10) % 2 == 0:
                new_img[i, j] = img[i + 1, j]
            else:
                new_img[i, j] = img[i + 2, j]
    return new_img

# 图像增强
def img_add():
    img = Image.open("oil.jpg")
    enh_col = ImageEnhance.Color(img)
    color = 2.0
    new_img = enh_col.enhance(color)
    new_img = cv2.cvtColor(np.asarray(new_img), cv2.COLOR_RGB2BGR)
    return new_img

if __name__ == "__main__":
    img = cv2.imread("49.jpg")
    oil_img = oil_effect(img)
    cv2.imwrite("oil.jpg", oil_img)
    cv2.imshow("0", img)
    cv2.imshow("1", img_add())
    cv2.waitKey()
    cv2.destroyAllWindows()

运行之后,效果如下:

水彩效果

像油画效果一样,水彩效果也可以用单行代码完成,但不包括导入和图像读取。

cv2.stylization()

import cv2

img = cv2.imread('img.jpg')

res = cv2.stylization(img, sigma_s=60, sigma_r=0.6)

# sigma_s controls the size of the neighborhood. Range 1 - 200

# sigma_r controls the how dissimilar colors within the neighborhood will be averaged. A larger sigma_r results in large regions of constant color. Range 0 - 1

到此这篇关于OpenCV-Python实现油画效果的实例的文章就介绍到这了,更多相关OpenCV 油画内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用Opencv实现图片的油画特效实例

    一.方法原理(步骤) 1.将彩色图片转换为灰度图片(调用opencv的cvtColor()方法): 2.将图片分割为若干个小方块,后面会统一小方块中每一个像素的灰度值: 3.将0-255的灰度值划分为几个等级,并把上一步处理的结果映射到这些范围内.例如0-255一共256个灰度等级,把它划分为四个段,即每段有64个灰度等级(0-63为第一段,64-127为第二段,128-191为第三段,192-255为第四段): 4.找到每个小方块中,最多灰度等级的所有像素,并求这些像素的均值: 5.用上一步得

  • OpenCV-Python实现油画效果的实例

    油画的实现原理 油画简单的理解是带有艺术感的图像,色彩相对于原图要更加鲜艳,但却是失真的. 而且对于喜欢欣赏艺术的读者,肯定或多或少关注过油画,油画并不细腻,而且小部分因为色块的堆积非常模糊.所以,我们实现油画的原理是:逐行对图像进行处理,使周围相邻距离的像素进行打乱. 至于打乱的算法,你可以随机设计.不过,需要注意的是在处理到图像边缘时,比如左下角最后一个像素,那么如果打乱其像素,取右边的显然不可取,因为右边没有像素会导致数组越界.所以在处理油画时,可以人为的剪掉部分边缘像素用于混淆. 还有,

  • opencv python模糊影像检测效果

    本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹.本文只使用cv2和shutil库,若想直接使用该脚本需安装这两个库.完整代码如下图所示. import os import cv2 import shutil import sys # 模糊影像检测函数,阈值默认为0.07 def blurImagesDetection(folder_path, thres=0.07): # 新建一个用于存放模糊影像的文件夹 blurImageDirPat

  • opencv python模糊影像检测效果

    本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹.本文只使用cv2和shutil库,若想直接使用该脚本需安装这两个库.完整代码如下图所示. import os import cv2 import shutil import sys # 模糊影像检测函数,阈值默认为0.07 def blurImagesDetection(folder_path, thres=0.07): # 新建一个用于存放模糊影像的文件夹 blurImageDirPat

  • Python 实现图像特效中的油画效果

    目录 一 基本原理 二 代码实现 三 总体实现代码以及保存  在前面的文章Python 计算机视觉(十五)-- 图像特效处理中我已经介绍了大部分的图像的特效处理,但还是忽略了油画特效的处理,在本篇文章中简单介绍一下油画特效的基本原理以及代码实现,感兴趣的小伙伴可以跟着码一遍代码,或者使用代码直接运行查看一下效果就行. 一 基本原理 如下面的两幅图所示,油画用对了地方会使得图像一下子显得文艺起来了呢! 拍出的图像 转化为油画 那么将一幅图像转化为油画类型的图案是怎么实现的呢?为了将一幅普通的图像转

  • python在OpenCV里实现投影变换效果

    前面学习了仿射变换,是经常使用到的变换,也很容易理解.在日常生活中,经常会遇到下面这种的情况: 仔细地观察比亚迪秦这台汽车的车牌,发现它拍照的角度不是垂直的方向,而是有一个角度,当要进行车牌识别的时候,发现字符是变形的,与电脑里比较的图片肯定有区别,因此识别不出来.这时怎么办呢?就需要经过一个投影变换才可以把车牌号纠正过来,才能进入识别过程. 好吧,到这里认识到投影变换的感性认识了,那么你又会继续考虑下一个问题,在软件里怎么样计算呢,难道还是使用仿射变换的矩阵.从这里看一下,前面闽A比较大,后面

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • python opencv实现任意角度的透视变换实例代码

    本文主要分享的是一则python+opencv实现任意角度的透视变换的实例,具体如下: # -*- coding:utf-8 -*- import cv2 import numpy as np def rad(x): return x * np.pi / 180 img = cv2.imread("6.jfif") cv2.imshow("original", img) # 扩展图像,保证内容不超出可视范围 img = cv2.copyMakeBorder(img,

  • 对Python+opencv将图片生成视频的实例详解

    如下所示: import cv2 fps = 16 size = (width,height) videowriter = cv2.VideoWriter("a.avi",cv2.VideoWriter_fourcc('M','J','P','G'),fps,size) for i in range(1,200): img = cv2.imread('%d'.jpg % i) videowriter.write(img) 以上这篇对Python+opencv将图片生成视频的实例详解就是

  • opencv python图像梯度实例详解

    这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点

  • Python使用OpenCV实现虚拟缩放效果

    目录 介绍 要求 目标 构建 结论 介绍 OpenCV 彻底改变了整个图像处理领域.从图像分类到对象检测,我们不仅可以使用 OpenCV 库做一些很酷的事情,而且还可以构建一流的应用程序. 今天我们要实现一个有趣的东西,它是手机或电脑中的一种功能,即图像缩放.但在这里,它将是实时对帧上所需的图像进行虚拟缩放. 要求 对于这个项目,我们将使用 OpenCV 库和另一个名为 Cvzone 的库来使用虚拟缩放. CVZone 它是一个建立在 OpenCV 和 MediaPipe 之上的库.它使事情变得

随机推荐