Pandas DataFrame数据修改值的方法
dfmi.iloc[:,1]
pandas要修改值先需要了解DataFrame的一些知识
此处参照的是pandas的官方文档
When setting values in a pandas object, care must be taken to avoid what is calledchained indexing. Here is an example.
要修改pandas--DataFrame中的值要注意避免在链式索引上得到的DataFrame的值
这里创建了一个DataFrame
dfmi = pd.DataFrame([list('abcd'),list('efgh'),list('ijkl'),list('mnop')], columns=pd.MultiIndex.from_product([['one','two'], ['first','second']]))
在列索引运用的层次索引创建了一个层次索引
通过直接访问可以得到第一层索引['one']下的DataFrame的值,相当于一个单独索引的子表
dfmi['one']
dfmi['one']['second']
dfmi.loc[:,('one','first')]
对比iloc与loc的选择,通过直接标签访问的情况有所不同。通过标签的访问是一个序列性质的访问顺序,先从DataFrame选择出‘one'然后再在'one'中选择出'first'。将('one','first')元组作为传入,只调用了__getitem__一次,速度更快。
所以在修改值时避免这种线性调用
而选择下面这种方式
到此这篇关于Pandas DataFrame数据修改值的方法的文章就介绍到这了,更多相关Pandas DataFrame修改值内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
pandas DataFrame的修改方法(值、列、索引)
对于DataFrame的修改操作其实有很多,不单单是某个部分的值的修改,还有一些索引的修改.列名的修改,类型修改等等.我们仅选取部分进行介绍. 一.值的修改 DataFrame的修改方法,其实前面介绍loc方法的时候介绍了一些. 1. loc方法修改 loc方法实际上是定位某个位置的数据的,但是定位完以后就可以对此位置的数据进行修改,使用此方法可以对DataFrame进行的修改如下: 1.对某行.某N行进行修改: 2.对某列.某N列进行修改: 3.对横坐标为某行或某N行,纵坐标为某列或者某N列的
-
pandas DataFrame 数据选取,修改,切片的实现
在刚开始使用pandas DataFrame的时候,对于数据的选取,修改和切片经常困惑,这里总结了一些常用的操作. pandas主要提供了三种属性用来选取行/列数据: 属性名 属性 ix 根据整数索引或者行标签选取数据 iloc 根据位置的整数索引选取数据 loc 根据行标签选取数据 先初始化一个DateFrame做例子 import numpy as np import pandas as pd df = pd.DataFrame([['Snow','M',22],['Tyrion','M',
-
pandas中DataFrame修改index、columns名的方法示例
一般常用的有两个方法: 1.使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现. 2.使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) 参数介绍: mapper,index,columns:可以任选
-
pandas修改DataFrame列名的方法
在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>
-
python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现
相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用
-
pandas修改DataFrame列名的实现方法
提出问题 存在一个名为dataset的DataFrame >>> dataset.columns Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.id
-
Pandas DataFrame数据修改值的方法
dfmi.iloc[:,1] pandas要修改值先需要了解DataFrame的一些知识 此处参照的是pandas的官方文档 When setting values in a pandas object, care must be taken to avoid what is calledchained indexing. Here is an example. 要修改pandas--DataFrame中的值要注意避免在链式索引上得到的DataFrame的值 这里创建了一个DataFrame d
-
pandas DataFrame数据转为list的方法
首先使用np.array()函数把DataFrame转化为np.ndarray(),再利用tolist()函数把np.ndarray()转为list,示例代码如下: # -*- coding:utf-8-*- import numpy as np import pandas as pd data_x = pd.read_csv("E:/Tianchi/result/features.csv",usecols=[2,3,4])#pd.dataframe data_y = pd.read_
-
pandas Dataframe实现批量修改值的方法
目录 1.使用iloc对数据进行批量修改 2.对数据进行判定后,相互+/-/某个数* 第一种方法:使用内置函数where函数 第二种方法:使用mask函数 第三种方法:replace函数 1.使用iloc对数据进行批量修改 使用iloc最简单的就是将数据批量修改为某个特定的值 以下是我随便写入的数据: 现在将[‘d’,‘e’]列,[2,3,4]行的数据全部修改为0 import pandas as pd data = pd.read_excel('some_chaneg.xlsx') data1
-
使用pandas中的DataFrame数据绘制柱状图的方法
折线图是数据分析的一种手段,但是有时候我们也需要柱状图进行不同数据的可视化量化对比.使用pandas的DataFrame方法进行柱状图的绘制也是比较方便的. 把之前的折线图绘制代码修改一下如下: from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(abs(randn(10,5)),co
-
Python pandas DataFrame数据拼接方法
目录 前言 DataFrame数据拼接方法一:使用.append()方法. DataFrame数据拼接方法二:使用.concat()方法. 补充:Python同时合并多个DataFrame 总结 前言 在pandas模块中,通常我们都需要对类型为DataFrame的数据进行操作,其中最为常见的操作便是拼接了.比如我们将两个Excel表格中的数据读入,随后拼接完成后保存进一个新的Excel表格文件中.之前查找了相关的博客, 发现网络上鱼龙混杂.有些代码完全无法执行,为了提高效率,这里做一个详细地记
-
layui table单元格事件修改值的方法
事件中的 this相当于document.getElementById("id") 替代方法就是将原本 document.getElementById("id").InnerHTML = "填充代码"; 替换成 $("#id").html("填充代码"); <!DOCTYPE html> <html> <head> <meta charset="utf-8
-
Pandas DataFrame数据的更改、插入新增的列和行的方法
一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['
-
Pandas.DataFrame转置的实现 原创
简述 Motivation sometimes,换一种获取数据的方式,可以提高数据获取的速度. sometimes,由于预计爬取的数据长度不确定,只能这么先存储起来. sometimes,有个给你的数据就是这样,但是没办法很方便的使用 - 这些情况下,你可能就会需要遇到DataFrame行列转置的方法. Contribution 提供了Pandas.DataFrame的行列转置的方法 实验部分 导入包 >>> import pandas as pd 创建数据 >>> d
-
Python数据分析之 Pandas Dataframe条件筛选遍历详情
目录 一.条件筛选 二.Dataframe数据遍历 for...in...语句 iteritems()方法 iterrows()方法 itertuples()方法 一.条件筛选 查询Pandas Dataframe数据时,经常会筛选出符合条件的数据,接下来介绍一下具体的使用方式. 示例Dataframe如下: 单条件筛选,例如查询gender为woman的数据: df[df["gender"]=="woman"] # 或 df.loc[df["gender
随机推荐
- JavaScript isArray()函数判断对象类型的种种方法
- 常用的HTML富文本编译器UEditor、CKEditor、TinyMCE、HTMLArea、eWebEditor、KindEditor简介
- 利用DataSet部分功能实现网站登录
- mysql仿asp的数据库操作类
- 超过了脚本运行的最长时间..Server.ScriptTimeOut 属性指定新值
- Java递归算法详解(动力节点整理)
- Spring Mvc中传递参数方法之url/requestMapping详解
- IOS代码笔记之文字走马灯效果
- Bootstrap缩略图与警告框学习使用
- c++拷贝构造函数防篡改示例
- Android Retrofit 2.0框架上传图片解决方案
- JAVASCRIPT IE 与 FF中兼容问题小结
- php中用date函数获取当前时间有误的解决办法
- Dvbbs7.1 sp1 SQL版savepost.asp注入漏洞分析、利用及防范
- 我想将一台服务器上的所有主机都延长到期时间一周
- 网吧服务器设置的不完全攻略大全集
- windows xp下安装pear
- 深入理解C++中常见的关键字含义
- Vue 中的compile操作方法
- 详解SpringBoot下文件上传与下载的实现