Python使用matplotlib给柱状图添加数据标签bar_label()

目录
  • 0.更新matplotlib库
  • 1.导入库
  • 2.数据准备
  • 3.绘制柱状图
  • 4.绘图结果
  • 5.完整代码
  • 6.bar_label()相关参数的补充说明

0.更新matplotlib库

本文后续的实验过程都是基于matplotlib版本大于等于3.4.1,如果版本较低,是无法实行后续操作的,如何在Pycharm中直接更新matplotlib库的版本,请参照方法:以tensorflow库为例用Pycharm更新第三方库

1.导入库

直接导入matplotlib.pyplot库,代码为:

import matplotlib.pyplot as plt

2.数据准备

用list分别准备横坐标和纵坐标的数据。

# 构造数据
X_set = [1, 2, 3, 4, 5]  # X轴数值
Y_set = [128, 211, 136, 234, 150]  # Y轴数据

3.绘制柱状图

绘图代码如下:

p1 = plt.bar(X_set, Y_set, width= 0.35, label='value')  # width表示柱子的宽度
plt.bar_label(p1, label_type='edge')   # label_type=‘edge'表示将数据值标签放在柱子顶端,label_type=‘center'表示将数据值标签放在柱子中间。
plt.title('The distribution of XXX')
plt.show()

4.绘图结果

上述绘图结果如下:

5.完整代码

完整代码如下:

import matplotlib.pyplot as plt

# 构造数据
X_set = [1, 2, 3, 4, 5]
Y_set = [128, 211, 136, 234, 150]
p1 = plt.bar(X_set, Y_set, width= 0.35, label='value')
plt.bar_label(p1, label_type='edge')
plt.title('The distribution of XXX')
plt.show()

6.bar_label()相关参数的补充说明

函数的签名为matplotlib.pyplot.bar_label(container, labels=None, *, fmt='%g', label_type='edge', padding=0, **kwargs)

函数的参数为:

  • (1)container:柱子的容器对象,通常为bar或barh函数返回值。 .BarContainer对象。必备参数。
  • (2)labels : 标签文本列表。类数组对象。可选参数。如果为None,则值为使用fmt参数格式化的柱子的数据(柱子的高度)。
  • (3)fmt:标签的格式字符串。 字符串。默认值为’%g’,即将标签值格式化为浮点数。
  • (4)label_type :标签类型。取值范围为 {'edge', 'center'},默认值为'edge'。对于普通柱状图,该参数仅用于控制标签的位置,对于堆积柱状图,不同标签类型对应不同的标签值。
    • (4.1)'edge': 标签位于柱子的端点。显示的值为柱子的端点位置。注意!对于堆积柱状图即堆积的多个柱子的总长度。
    • (4.2)'center':标签位于柱子的中部。显示的值为柱子的长度。
  • (5)padding : 标签与柱子之间的距离,单位为像素。浮点数。默认值为0。
  • (6)**kwargs:传递给 annotate()的其他参数。返回值为标签的Text对象列表。

到此这篇关于Python使用matplotlib给柱状图添加数据标签bar_label()的文章就介绍到这了,更多相关matplotlib给柱状图添数据标签内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 实现添加标签&打标签的操作

    普通打标签 odue_df=df_train_stmt.loc[(df_train_stmt.AGE3>0)|(df_train_stmt.AGE4>0)|(df_train_stmt.AGE5>0)|(df_train_stmt.AGE6>0),['XACCOUNT']].drop_duplicates() odue_df['label']=1 cust_df=df_acct[['CUSTR_NBR','XACCOUNT']].drop_duplicates() #做合并 df_

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python可视化学习之matplotlib内置单颜色

    目录 1.matplotlib支持的颜色格式 2.matplotlib颜色使用方法 3.matplotlib内置单颜色色号 'BASE_COLORS'色号 'BASE_COLORS'色图 TABLEAU_COLORS色号 TABLEAU_COLORS色图 CSS4_COLORS色号 CSS4_COLORS色图 XKCD_COLORS色号 XKCD_COLORS色图 1.matplotlib支持的颜色格式 1.RGB 或者 RGBA 元组格式颜色 元组中浮点型数值位于 [0, 1] 之间,e.g(

  • python调用Matplotlib绘制分布点并且添加标签

    本文实例为大家分享了Python调用Matplotlib绘制分布点添加标签的具体代码,供大家参考,具体内容如下 添加标签的目的 代码 截图 目的 上文介绍了根据图像的大小作为坐标来绘制分布点图.老大又给了我一个任务,我绘制完,每次将图保存,发给她,但是图片中的点的坐标是不能显示了,所以她让我给每个点添加个label,而且label是该点的横纵坐标. 代码 import matplotlib.pyplot as plt from numpy.random import rand import nu

  • Python matplotlib可视化之绘制韦恩图

    目录 本文速览 1.matplotlib_venn (1)2组数据venn图 (2)3组数据venn图 2.pyvenn 2组数据venn 3组数据venn 4组数据venn 5组数据venn 6组数据venn 本文速览 2组数据venn 3组数据venn 4组数据venn 5组数据venn图 6组数据venn python中Matplotlib并没有现成的函数可直接绘制venn图, 不过已经有前辈基于matplotlib.patches及matplotlib.path开发了两个轮子: matp

  • Python使用matplotlib给柱状图添加数据标签bar_label()

    目录 0.更新matplotlib库 1.导入库 2.数据准备 3.绘制柱状图 4.绘图结果 5.完整代码 6.bar_label()相关参数的补充说明 0.更新matplotlib库 本文后续的实验过程都是基于matplotlib版本大于等于3.4.1,如果版本较低,是无法实行后续操作的,如何在Pycharm中直接更新matplotlib库的版本,请参照方法:以tensorflow库为例用Pycharm更新第三方库 1.导入库 直接导入matplotlib.pyplot库,代码为: impor

  • Python用 matplotlib 绘制柱状图

    目录 1. 柱状图概述 1.1什么是柱状图 1.2柱状图使用场景 1.3柱状图绘制步骤 1.3案例展示 2. 柱状图属性 2.1柱状体颜色填充 2.2状描边设置 2.3状体边框宽度 2.4刻度标签 3. 堆叠柱状图 4. 并列柱状图 5. 水平柱状图 6. 添加折线柱状图 7. 正负柱状图 复习回顾: Python 为数据展示提供了大量优秀的功能包,其中 matplotlib 模块可以方便绘制制作折线图.柱状图.散点图等高质量的数据包. 关于 matplotlib 模块,我们前期已经对matpl

  • python使用matplotlib画柱状图、散点图

    本文实例为大家分享了python使用matplotlib画柱状图.散点图的具体代码,供大家参考,具体内容如下 柱状图(plt.bar) 代码与注释 import numpy as np from matplotlib import pyplot as plt plt.figure(figsize=(9,6)) n = 8 X = np.arange(n)+1 #X是1,2,3,4,5,6,7,8,柱的个数 # numpy.random.uniform(low=0.0, high=1.0, siz

  • python使用matplotlib绘制柱状图教程

    Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s

  • 通过python的matplotlib包将Tensorflow数据进行可视化的方法

    使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) bi

  • Python pandas如何向excel添加数据

    pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

  • Python利用matplotlib.pyplot绘图时如何设置坐标轴刻度

    前言 matplotlib.pyplot是一些命令行风格函数的集合,使matplotlib以类似于MATLAB的方式工作.每个pyplot函数对一幅图片(figure)做一些改动:比如创建新图片,在图片创建一个新的作图区域(plotting area),在一个作图区域内画直线,给图添加标签(label)等.matplotlib.pyplot是有状态的,亦即它会保存当前图片和作图区域的状态,新的作图函数会作用在当前图片的状态基础之上. 在开始本文之前,不熟悉的朋友可以先看看这篇文章:Python

  • Python使用matplotlib简单绘图示例

    本文实例讲述了Python使用matplotlib简单绘图.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python2 """ Created on Mon Apr 24 12:48:40 2017 @author: x-power """ import matplotlib.pyplot as plt #首先载入 matplotlib的绘图模块pyplot,并且重命名为plt. import numpy

  • python中matplotlib的颜色以及形状实例详解

    目录 绘制折线图 绘制柱形图 簇状柱形图 堆积柱形图 散点图 附:matplotlib实现区域颜色填充 总结 绘制折线图 命令形如: # 常用 plt.plot(x, y, linewidth = '1', label = "test", color=' red ', linestyle=':', marker='|') # 所有可选参数 plt.plot(x,y,color,linestyle=,linewidth,marker,markeredgecolor,markeredgwi

随机推荐