pytorch常用函数定义及resnet模型修改实例

目录
  • 模型定义常用函数
    • 利用nn.Parameter()设计新的层
    • nn.Sequential
    • nn.ModuleList()
    • nn.ModuleDict()
    • nn.Flatten
  • 模型修改案例
    • 修改模型层
    • 添加外部输入

模型定义常用函数

利用nn.Parameter()设计新的层

import torch
from torch import nn
class MyLinear(nn.Module):
  def __init__(self, in_features, out_features):
    super().__init__()
    self.weight = nn.Parameter(torch.randn(in_features, out_features))
    self.bias = nn.Parameter(torch.randn(out_features))
  def forward(self, input):
    return (input @ self.weight) + self.bias

nn.Sequential

一个有序的容器,神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行,同时以神经网络模块为元素的有序字典也可以作为传入参数。Sequential适用于快速验证结果,简单易读,但使用Sequential也会使得模型定义丧失灵活性,比如需要在模型中间加入一个外部输入时就不适合用Sequential的方式实现。

net = nn.Sequential(
   ('fc1',MyLinear(4, 3)),
   ('act',nn.ReLU()),
   ('fc2',MyLinear(3, 1))
)

nn.ModuleList()

ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作。同时,子模块或层的权重也会自动添加到网络中来。

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

要特别注意的是,nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起。

ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序,需要经过forward函数指定各个层的先后顺序后才算完成了模型的定义。具体实现时用for循环即可完成:

class model(nn.Module):
  def __init__(self, ...):
    super().__init__()
    self.modulelist = ...
    ...
  def forward(self, x):
    for layer in self.modulelist:
      x = layer(x)
    return x

nn.ModuleDict()

ModuleDict和ModuleList的作用类似,只是ModuleDict能够更方便地为神经网络的层添加名称。

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

ModuleList和ModuleDict在某个完全相同的层需要重复出现多次时,非常方便实现,可以”一行顶多行“;当我们需要之前层的信息的时候,比如 ResNets 中的残差计算,当前层的结果需要和之前层中的结果进行融合,一般使用 ModuleList/ModuleDict 比较方便。

nn.Flatten

展平输入的张量: 28x28 -> 784

input = torch.randn(32, 1, 5, 5)
m = nn.Sequential(
    nn.Conv2d(1, 32, 5, 1, 1),
    nn.Flatten()
)
output = m(input)
output.size()

模型修改案例

有了上面的一些常用方法,我们可以修改现有的一些开源模型,这里通过介绍修改模型层、添加额外输入的案例来帮助我们更好地理解。

修改模型层

以pytorch官方视觉库torchvision预定义好的模型ResNet50为例,探索如何修改模型的某一层或者某几层。我们先看看模型的定义:

import torchvision.models as models
net = models.resnet50()
print(net)
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
..............
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

为了适配ImageNet,fc层输出是1000,若需要用这个resnet模型去做一个10分类的问题,就应该修改模型的fc层,将其输出节点数替换为10。另外,我们觉得一层全连接层可能太少了,想再加一层。可以做如下修改:

from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
                          ('relu1', nn.ReLU()),
                          ('dropout1',nn.Dropout(0.5)),
                          ('fc2', nn.Linear(128, 10)),
                          ('output', nn.Softmax(dim=1))
                          ]))
net.fc = classifier # 将模型(net)最后名称为“fc”的层替换成了我们自己定义的名称为“classifier”的结构

添加外部输入

有时候在模型训练中,除了已有模型的输入之外,还需要输入额外的信息。比如在CNN网络中,我们除了输入图像,还需要同时输入图像对应的其他信息,这时候就需要在已有的CNN网络中添加额外的输入变量。基本思路是:将原模型添加输入位置前的部分作为一个整体,同时在forward中定义好原模型不变的部分、添加的输入和后续层之间的连接关系,从而完成模型的修改。

我们以torchvision的resnet50模型为基础,任务还是10分类任务。不同点在于,我们希望利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测。具体实现如下:

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc_add = nn.Linear(1001, 10, bias=True)
        self.output = nn.Softmax(dim=1)
    def forward(self, x, add_variable):
        x = self.net(x)
        # add_variable (batch_size, )->(batch_size, 1)
        x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1)
        x = self.fc_add(x)
        x = self.output(x)
        return x

修改好的模型结构进行实例化,就可以使用

import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
# 使用时输入两个inputs
outputs = model(inputs, add_var)

参考资料:

以上就是pytorch常用函数定义及resnet模型修改实例的详细内容,更多关于pytorch函数resnet模型修改的资料请关注我们其它相关文章!

(0)

相关推荐

  • 人工智能学习pyTorch的ResNet残差模块示例详解

    目录 1.定义ResNet残差模块 ①各层的定义 ②前向传播 2.ResNet18的实现 ①各层的定义 ②前向传播 3.测试ResNet18 1.定义ResNet残差模块 一个block中,有两个卷积层,之后的输出还要和输入进行相加.因此一个block的前向流程如下: 输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out 中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些. ①各层的定义 ②前向传播 在前向传播中输入x,过

  • 聊聊基于pytorch实现Resnet对本地数据集的训练问题

    目录 1.dataset.py(先看代码的总体流程再看介绍) 2.network.py 3.train.py 4.结果与总结 本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.py文件,功能是对本地的数据集进行分类.本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍). 对于整个项目的流程首

  • pytorch教程resnet.py的实现文件源码分析

    目录 调用pytorch内置的模型的方法 解读模型源码Resnet.py 包含的库文件 该库定义了6种Resnet的网络结构 每种网络都有训练好的可以直接用的.pth参数文件 Resnet中大多使用3*3的卷积定义如下 如何定义不同大小的Resnet网络 定义Resnet18 定义Resnet34 Resnet类 网络的forward过程 残差Block连接是如何实现的 调用pytorch内置的模型的方法 import torchvision model = torchvision.models

  • PyTorch详解经典网络ResNet实现流程

    目录 简述 残差结构 18-layer 实现 在数据集训练 简述 GoogleNet 和 VGG 等网络证明了,更深度的网络可以抽象出表达能力更强的特征,进而获得更强的分类能力.在深度网络中,随之网络深度的增加,每层输出的特征图分辨率主要是高和宽越来越小,而深度逐渐增加. 深度的增加理论上能够提升网络的表达能力,但是对于优化来说就会产生梯度消失的问题.在深度网络中,反向传播时,梯度从输出端向数据端逐层传播,传播过程中,梯度的累乘使得近数据段接近0值,使得网络的训练失效. 为了解决梯度消失问题,可

  • Pytorch深度学习经典卷积神经网络resnet模块训练

    目录 前言 一.resnet 二.resnet网络结构 三.resnet18 1.导包 2.残差模块 2.通道数翻倍残差模块 3.rensnet18模块 4.数据测试 5.损失函数,优化器 6.加载数据集,数据增强 7.训练数据 8.保存模型 9.加载测试集数据,进行模型测试 四.resnet深层对比 前言 随着深度学习的不断发展,从开山之作Alexnet到VGG,网络结构不断优化,但是在VGG网络研究过程中,人们发现随着网络深度的不断提高,准确率却没有得到提高,如图所示: 人们觉得深度学习到此

  • pytorch实现ResNet结构的实例代码

    1.ResNet的创新 现在重新稍微系统的介绍一下ResNet网络结构. ResNet结构首先通过一个卷积层然后有一个池化层,然后通过一系列的残差结构,最后再通过一个平均池化下采样操作,以及一个全连接层的得到了一个输出.ResNet网络可以达到很深的层数的原因就是不断的堆叠残差结构而来的. 1)亮点 网络中的亮点 : 超深的网络结构( 突破1000 层) 提出residual 模块 使用Batch Normalization 加速训练( 丢弃dropout) 但是,一般来说,并不是一直的加深神经

  • pytorch常用函数定义及resnet模型修改实例

    目录 模型定义常用函数 利用nn.Parameter()设计新的层 nn.Sequential nn.ModuleList() nn.ModuleDict() nn.Flatten 模型修改案例 修改模型层 添加外部输入 模型定义常用函数 利用nn.Parameter()设计新的层 import torch from torch import nn class MyLinear(nn.Module): def __init__(self, in_features, out_features):

  • pytorch常用函数之torch.randn()解读

    目录 pytorch常用函数torch.randn() pytorch torch.chunk(tensor, chunks, dim) 总结 pytorch常用函数torch.randn() torch.randn(*sizes, out=None) → Tensor 功能:从标准正态分布(均值为0,方差为1)中抽取的一组随机数.返回一个张量 sizes (int…) - 整数序列,定义输出张量的形状 out (Tensor, optinal) - 结果张量 eg: random = torc

  • pytorch 常用函数 max ,eq说明

    max找出tensor 的行或者列最大的值: 找出每行的最大值: import torch outputs=torch.FloatTensor([[1],[2],[3]]) print(torch.max(outputs.data,1)) 输出: (tensor([ 1., 2., 3.]), tensor([ 0, 0, 0])) 找出每列的最大值: import torch outputs=torch.FloatTensor([[1],[2],[3]]) print(torch.max(ou

  • python神经网络slim常用函数训练保存模型

    目录 学习前言 slim是什么 slim常用函数 1.slim = tf.contrib.slim 2.slim.create_global_step 3.slim.dataset.Dataset 4.slim.dataset_data_provider.DatasetDataProvider 5.slim.conv2d 6.slim.max_pool2d 7.slim.fully_connected 8.slim.learning.train 本次博文实现的目标 整体框架构建思路 1.整体框架

  • javascript中数组的多种定义方法和常用函数简介

    数组的定义:方法1. 复制代码 代码如下: var mycars=new Array()mycars[0]="sharejs.com"mycars[1]="Volvo"mycars[2]="BMW" 方法2.定义和初始化一起: 复制代码 代码如下: var mycars=new Array("Saab","Volvo","BMW"); 或者: 复制代码 代码如下: var mycars=

  • Python入门教程5. 字典基本操作【定义、运算、常用函数】 原创

    前面简单介绍了Python元组基本操作,这里再来简单讲述一下Python字典相关操作 >>> dir(dict) #查看字段dict的属性和方法 ['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',

  • PyTorch零基础入门之构建模型基础

    目录 一.神经网络的构造 二.神经网络中常见的层 2.1 不含模型参数的层 2.2 含模型参数的层 (1)代码栗子1 (2)代码栗子2 2.3 二维卷积层 stride 2.4 池化层 三.LeNet模型栗子 三点提醒: 四.AlexNet模型栗子 Reference 一.神经网络的构造 PyTorch中神经网络构造一般是基于 Module 类的模型来完成的,它让模型构造更加灵活.Module 类是 nn 模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型.

  • python六种基本数据类型及常用函数展示

    目录 number(数字) Number类型常用的函数 随机数 import random string(字符串) 字符串常用的函数 list (列表) 列表的常用函数 set(集合) tuple (元组) dictionary(字典) 字典常用函数 总结 number(数字) int(整型), float(浮点型), bool, complex(复数类型) 四种基本类型,用于存储数值 类型转换:int(),float()- 内置函数 type(), 用以查询变量的类型 数学运算 :+.-.*

随机推荐