硬核!15张图解Redis为什么这么快(推荐)

作为一名服务端工程师,工作中你肯定和 Redis 打过交道。Redis为什么快,这点想必你也知道,至少为了面试也做过准备。很多人知道Redis快仅仅因为它是基于内存实现的,对于其它原因倒是模棱两可。

那么今天就和小莱一起看看:

图注:- 思维导图 -

基于内存实现

这点在一开始就提到过了,这里再简单说说。

Redis 是基于内存的数据库,那不可避免的就要与磁盘数据库做对比。对于磁盘数据库来说,是需要将数据读取到内存里的,这个过程会受到磁盘 I/O 的限制。

而对于内存数据库来说,本身数据就存在于内存里,也就没有了这方面的开销。

高效的数据结构

Redis 中有多种数据类型,每种数据类型的底层都由一种或多种数据结构来支持。正是因为有了这些数据结构,Redis 在存储与读取上的速度才不受阻碍。这些数据结构有什么特别的地方,各位看官接着往下看:

1、简单动态字符串

这个名词可能你不熟悉,换成SDS肯定就知道了。这是用来处理字符串的。了解 C 语言的都知道,它是有处理字符串方法的。而 Redis 就是 C 语言实现的,那为什么还要重复造轮子?我们从以下几点来看:

(1)字符串长度处理

这个图是字符串在 C 语言中的存储方式,想要获取 「Redis」的长度,需要从头开始遍历,直到遇到 '\0' 为止。

Redis 中怎么操作呢?用一个 len 字段记录当前字符串的长度。想要获取长度只需要获取 len 字段即可。你看,差距不言自明。前者遍历的时间复杂度为 O(n),Redis 中 O(1)就能拿到,速度明显提升。

(2)内存重新分配

C 语言中涉及到修改字符串的时候会重新分配内存。修改地越频繁,内存分配也就越频繁。而内存分配是会消耗性能的,那么性能下降在所难免。

而 Redis 中会涉及到字符串频繁的修改操作,这种内存分配方式显然就不适合了。于是SDS实现了两种优化策略:

空间预分配

对 SDS 修改及空间扩充时,除了分配所必须的空间外,还会额外分配未使用的空间。

具体分配规则是这样的:SDS 修改后,len 长度小于 1M,那么将会额外分配与 len 相同长度的未使用空间。如果修改后长度大于 1M,那么将分配1M的使用空间。

惰性空间释放

当然,有空间分配对应的就有空间释放。

SDS 缩短时,并不会回收多余的内存空间,而是使用 free 字段将多出来的空间记录下来。如果后续有变更操作,直接使用 free 中记录的空间,减少了内存的分配。

(3)二进制安全

你已经知道了 Redis 可以存储各种数据类型,那么二进制数据肯定也不例外。但二进制数据并不是规则的字符串格式,可能会包含一些特殊的字符,比如 '\0' 等。

前面我们提到过,C 中字符串遇到'\0'会结束,那'\0'之后的数据就读取不上了。但在 SDS 中,是根据 len 长度来判断字符串结束的。

看,二进制安全的问题就解决了。

2、双端链表

列表 List 更多是被当作队列或栈来使用的。队列和栈的特性一个先进先出,一个先进后出。双端链表很好的支持了这些特性。

图注:- 双端链表-

(1)前后节点

链表里每个节点都带有两个指针,prev 指向前节点,next 指向后节点。这样在时间复杂度为O(1)内就能获取到前后节点。

(2)头尾节点

你可能注意到了,头节点里有 head 和 tail 两个参数,分别指向头节点和尾节点。这样的设计能够对双端节点的处理时间复杂度降至O(1),对于队列和栈来说再适合不过。同时链表迭代时从两端都可以进行。

(3)链表长度

头节点里同时还有一个参数 len,和上边提到的 SDS 里类似,这里是用来记录链表长度的。因此获取链表长度时不用再遍历整个链表,直接拿到 len 值就可以了,这个时间复杂度是O(1)。

你看,这些特性都降低了 List 使用时的时间开销。

3、压缩列表

双端链表我们已经熟悉了。不知道你有没有注意到一个问题:如果在一个链表节点中存储一个小数据,比如一个字节。那么对应的就要保存头节点,前后指针等额外的数据。

这样就浪费了空间,同时由于反复申请与释放也容易导致内存碎片化。这样内存的使用效率就太低了。

于是,压缩列表上场了!

它是经过特殊编码,专门为了提升内存使用效率设计的。所有的操作都是通过指针与解码出来的偏移量进行的。

并且压缩列表的内存是连续分配的,遍历的速度很快。

4、字典

Redis 作为 K-V 型数据库,所有的键值都是用字典来存储的。

日常学习中使用的字典你应该不会陌生,想查找某个词通过某个字就可以直接定位到,速度非常快。这里所说的字典原理上是一样的,通过某个 key 可以直接获取到对应的value。

字典又称为哈希表,这点没什么可说的。哈希表的特性大家都很清楚,能够在O(1)时间复杂度内取出和插入关联的值。

5、跳跃表

作为 Redis 中特有的数据结构-跳跃表,其在链表的基础上增加了多级索引来提升查找效率。

这是跳跃表的简单原理图,每一层都有一条有序的链表,最底层的链表包含了所有的元素。这样跳跃表就可以支持在O(logN)的时间复杂度里查找到对应的节点。

下面这张是跳表真实的存储结构,和其它数据结构一样,都在头节点里记录了相应的信息,减少了一些不必要的系统开销。

合理的数据编码

对于每一种数据类型来说,底层的支持可能是多种数据结构,什么时候使用哪种数据结构,这就涉及到了编码转化的问题。

那我们就来看看,不同的数据类型是如何进行编码转化的:

  • String:存储数字的话,采用int类型的编码,如果是非数字的话,采用 raw 编码;
  • List:字符串长度及元素个数小于一定范围使用 ziplist 编码,任意条件不满足,则转化为 linkedlist 编码;
  • Hash:hash 对象保存的键值对内的键和值字符串长度小于一定值及键值对;
  • Set:保存元素为整数及元素个数小于一定范围使用 intset 编码,任意条件不满足,则使用 hashtable 编码;
  • Zset:zset 对象中保存的元素个数小于及成员长度小于一定值使用 ziplist 编码,任意条件不满足,则使用 skiplist 编码。

合适的线程模型

Redis 快的原因还有一个是因为使用了合适的线程模型:

1、I/O多路复用模型

  • I/O:网络 I/O
  • 多路:多个 TCP 连接
  • 复用:共用一个线程或进程

生产环境中的使用,通常是多个客户端连接 Redis,然后各自发送命令至 Redis 服务器,最后服务端处理这些请求返回结果。

应对大量的请求,Redis 中使用I/O 多路复用程序同时监听多个套接字,并将这些事件推送到一个队列里,然后逐个被执行。最终将结果返回给客户端。

2、避免上下文切换

你一定听说过,Redis 是单线程的。那么单线程的 Redis 为什么会快呢?

因为多线程在执行过程中需要进行 CPU 的上下文切换,这个操作比较耗时。Redis 又是基于内存实现的,对于内存来说,没有上下文切换效率就是最高的。多次读写都在一个CPU 上,对于内存来说就是最佳方案。

3、单线程模型

顺便提一下,为什么Redis 是单线程的。

Redis 中使用了 Reactor 单线程模型,你可能对它并不熟悉。没关系,只需要大概了解一下即可。

这张图里,接收到用户的请求后,全部推送到一个队列里,然后交给文件事件分派器,而它是单线程的工作方式。Redis 又是基于它工作的,所以说 Redis 是单线程的。

总结

基于内存实现

  • 数据都存储在内存里,减少了一些不必要的 I/O 操作,操作速率很快。

高效的数据结构

  • 底层多种数据结构支持不同的数据类型,支持 Redis 存储不同的数据;
  • 不同数据结构的设计,使得数据存储时间复杂度降到最低。

合理的数据编码

  • 根据字符串的长度及元素的个数适配不同的编码格式。

合适的线程模型

  • I/O 多路复用模型同时监听客户端连接;
  • 单线程在执行过程中不需要进行上下文切换,减少了耗时。

到此这篇关于硬核!15张图解Redis为什么这么快的文章就介绍到这了,更多相关Redis为什么这么快内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Redis利用Pipeline加速查询速度的方法

    1. RTT Redis 是一种基于客户端-服务端模型以及请求/响应协议的TCP服务.这意味着通常情况下 Redis 客户端执行一条命令分为如下四个过程: 发送命令 命令排队 命令执行 返回结果 客户端向服务端发送一个查询请求,并监听Socket返回,通常是以阻塞模式,等待服务端响应.服务端处理命令,并将结果返回给客户端.客户端和服务端通过网络进行连接.这个连接可以很快,也可能很慢.无论网络如何延迟,数据包总是能从客户端到达服务端,服务端返回数据给客户端. 这个时间被称为 RTT (Round

  • Redis的KEYS 命令千万不能乱用

    KESY 命令 时间复杂度: O(N) , 假设Redis中的键名和给定的模式的长度有限的情况下,N为数据库中key的个数. Redis Keys 命令用于查找所有符合给定模式 pattern 的 key 尽管这个操作的时间复杂度是 O(N), 但是常量时间相当低.例如,在一个普通笔记本上跑Redis,扫描100万个key只要40毫秒. 命令格式 KEYS pattern Warning: 生产环境使用 KEYS 命令需要非常小心.在大的数据库上执行命令会影响性能.这个命令适合用来调试和特殊操作

  • 如何解决redisTemplate注入为空问题

    springboot2.*集成redis时,redis工具类中的redisTemplate注入后总是为空. 问题代码还原: 1.工具类定义成静态工具类,@Resource注入redisTemplate public class RedisCacheUtil { @Resource private static RedisTemplate<String, Object> redisTemplate; /** * 普通缓存获取 * @param key 键 * @return 值 */ publi

  • 硬核!15张图解Redis为什么这么快(推荐)

    作为一名服务端工程师,工作中你肯定和 Redis 打过交道.Redis为什么快,这点想必你也知道,至少为了面试也做过准备.很多人知道Redis快仅仅因为它是基于内存实现的,对于其它原因倒是模棱两可. 那么今天就和小莱一起看看: 图注:- 思维导图 - 基于内存实现 这点在一开始就提到过了,这里再简单说说. Redis 是基于内存的数据库,那不可避免的就要与磁盘数据库做对比.对于磁盘数据库来说,是需要将数据读取到内存里的,这个过程会受到磁盘 I/O 的限制. 而对于内存数据库来说,本身数据就存在于

  • 硬核 Redis 高频面试题解析

    目录 1.Redis 是单线程还是多线程? 2.为什么 Redis 是单线程? 3.Redis 为什么使用单进程.单线程也很快 4.Redis 在项目中的使用场景 5.Redis 常见的数据结构 6.Redis 的字符串(SDS)和C语言的字符串区别 7.Sorted Set底层数据结构 8.Sorted Set 为什么同时使用字典和跳跃表? 9.Sorted Set 为什么使用跳跃表,而不是红黑树? 10.Hash 对象底层结构 11.Hash 对象的扩容流程 12.渐进式 rehash 的优

  • 15张Vim速查表-帮你提高N倍效率

    去年上半年开始全面使用linux进行开发和娱乐了,现在已经回不去windows了. 话归正传,在Linux上一直使用vim,慢慢熟悉了它的命令,才终于领悟了什么是编辑器之神. 最近抽空整理了这份速查表,收获颇丰,并分享给大家. 进入vim vim配置 移动光标 屏幕滚动 插入文本类 删除命令 复制粘贴 撤销 搜索及替换 书签 visual模式 行方式命令 若不指定n1,n2,则表示将整个文件内容作为command的输入 | 宏 窗口操作 文件及其他 推荐: 感兴趣的朋友可以关注小编的微信公众号[

  • Apache Hudi灵活的Payload机制硬核解析

    1.摘要 Apache Hudi 的Payload是一种可扩展的数据处理机制,通过不同的Payload我们可以实现复杂场景的定制化数据写入方式,大大增加了数据处理的灵活性.Hudi Payload在写入和读取Hudi表时对数据进行去重.过滤.合并等操作的工具类,通过使用参数 "hoodie.datasource.write.payload.class"指定我们需要使用的Payload class.本文我们会深入探讨Hudi Payload的机制和不同Payload的区别及使用场景. 2

  • Java CountDownLatch的源码硬核解析

    目录 前言 介绍和使用 例子 概述 实现思路 源码解析 类结构图 await() 实现原理 countDown()实现原理 前言 对于并发执行,Java中的CountDownLatch是一个重要的类,简单理解, CountDownLatch中count down是倒数的意思,latch则是“门闩”的含义.在数量倒数到0的时候,打开“门闩”, 一起走,否则都等待在“门闩”的地方. 为了更好的理解CountDownLatch这个类,本文通过例子和源码带领大家深入解析这个类的原理. 介绍和使用 例子

  • 聊聊单线程的Redis为何会快到飞起

    目录 Redis为什么用单线程? 多线程的开销 Redis使用单线程为什么还这么快? 网络与IO操作的潜在阻塞点 基于多路复用的高性能IO模型 回调机制 Redis的性能瓶颈点 1.耗时操作 2.高并发场景 其他Redis相关的有趣问题 实际上它确实也很快 : ),但Redis底层却是单线程的!有同学可能就要有疑问了,为什么单线程的Redis却能够快到飞起? 别急,我尽量用通俗易懂的语言来给各位说道说道~~ Redis是单线程,主要是指Redis的网络IO和读写是由一个线程来完成的,但Redis

  • Redis为什么选择单线程?Redis为什么这么快?

    今天搞一下经典面试题Redis为什么选择单线程?Redis为什么这么快?,实现快速入门,丰富个人简历,提高面试level,给自己增加一点谈资,秒变面试小达人,BAT不是梦. 一.Redis版本迭代 Redis2.6,支持lua脚本: Redis3.0,支持集群: Redis4.0,混合持久化,多线程异步删除: Redis5.0,核心代码重构: Redis6.0,多线程IO: Redis7.0,Function.Multi-part-AOF: 二.Redis4.0之前为什么一直采用单线程? 1.R

  • springboot整合redis进行数据操作(推荐)

    redis是一种常见的nosql,日常开发中,我们使用它的频率比较高,因为它的多种数据接口,很多场景中我们都可以用到,并且redis对分布式这块做的非常好. springboot整合redis比较简单,并且使用redistemplate可以让我们更加方便的对数据进行操作. 1.添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starte

  • 开源 5 款超好用的数据库 GUI 带你玩转 MongoDB、Redis、SQL 数据库(推荐)

    工欲善其事必先利其器,想要玩溜数据库,不妨去试试本文安利的 5 款开源的数据库管理工具.除了流行的 SQL 类数据库--MySQL.PostgreSQL 之外,文档型数据库 MongoDB.内存数据库 Redis 的管理工具也在列表之中. MongoDB 图形化的管理工具:Mongood GitHub Star 数 :222 Mongood 是一个 MongoDB 图形化的管理工具.

  • redis与memcached的区别_动力节点Java学院整理

    传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间. 2.Memcached与MySQL数据库数据一致性问题. 3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL

随机推荐