Java基于ReadWriteLock实现锁的应用

所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。

与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。

在 writer 释放写入锁时,reader 和 writer 都处于等待状态,在这时要确定是授予读取锁还是授予写入锁。Writer 优先比较普遍,因为预期写入所需的时间较短并且不那么频繁。Reader 优先不太普遍,因为如果 reader 正如预期的那样频繁和持久,那么它将导致对于写入操作来说较长的时延。公平或者“按次序”实现也是有可能的。

在 reader 处于活动状态而 writer 处于等待状态时,确定是否向请求读取锁的 reader 授予读取锁。Reader 优先会无限期地延迟 writer,而 writer 优先会减少可能的并发。

我们创建信用卡类:

package com.entity;
public class BankCard {
  private String cardid = "XZ456789";
  private int balance = 10000;
  public String getCardid() {
    return cardid;
  }
  public void setCardid(String cardid) {
    this.cardid = cardid;
  }
  public int getBalance() {
    return balance;
  }
  public void setBalance(int balance) {
    this.balance = balance;
  }
} 

里面有卡号和父母已经存的钱。

儿子花钱首先要获得写的锁把卡锁了,然后再花钱。之后放开这个锁。

package com.thread;
import java.util.concurrent.locks.ReadWriteLock;
import com.entity.BankCard;
/**
 * @说明 儿子类,只消费
 */
public class Consumer implements Runnable {
  BankCard bc = null;
  ReadWriteLock lock = null;
  Consumer(BankCard bc, ReadWriteLock lock) {
    this.bc = bc;
    this.lock = lock;
  }
  public void run() {
    try {
      while(true){
        lock.writeLock().lock();
        System.out.print("儿子要消费,现在余额:" + bc.getBalance() + "\t");
        bc.setBalance(bc.getBalance() - 2000);
        System.out.println("儿子消费2000元,现在余额:" + bc.getBalance());
        lock.writeLock().unlock();
        Thread.sleep(3 * 1000);
      }
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
} 

父母类只监督这个卡的使用,获得的是读的锁。

package com.thread;
import java.util.concurrent.locks.ReadWriteLock;
import com.entity.BankCard;
/**
 * @说明 父母类,只监督
 */
public class Consumer2 implements Runnable {
	BankCard bc = null;
	int type = 0;
	ReadWriteLock lock = null;
	Consumer2(BankCard bc, ReadWriteLock lock,int type) {
		this.bc = bc;
		this.lock = lock;
		this.type = type;
	}
	public void run() {
		try {
			while(true){
				lock.readLock().lock();
				if(type==2)
					System.out.println("父亲要查询,现在余额:" + bc.getBalance());
				else
					System.out.println("老妈要查询,现在余额:" + bc.getBalance());
				//lock.readLock().unlock();
				Thread.sleep(1 * 1000);
			}
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
}

运行程序,儿子开始花钱,父母两人一直在查看花钱情况。

package com.thread;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import com.entity.BankCard;
public class MainThread {
  public static void main(String[] args) {
    BankCard bc = new BankCard();
    ReadWriteLock lock = new ReentrantReadWriteLock();
    ExecutorService pool = Executors.newCachedThreadPool();
    Consumer cm1 = new Consumer(bc, lock);
    Consumer2 cm2 = new Consumer2(bc, lock , 1);
    Consumer2 cm3 = new Consumer2(bc, lock , 2);
    pool.execute(cm1);
    pool.execute(cm2);
    pool.execute(cm3);
  }
} 

我们来看一下运行结果:

儿子要消费,现在余额:10000 儿子消费2000元,现在余额:8000
老妈要查询,现在余额:8000
父亲要查询,现在余额:8000
父亲要查询,现在余额:8000
老妈要查询,现在余额:8000
老妈要查询,现在余额:8000
父亲要查询,现在余额:8000
儿子要消费,现在余额:8000 儿子消费2000元,现在余额:6000
父亲要查询,现在余额:6000
老妈要查询,现在余额:6000
老妈要查询,现在余额:6000
父亲要查询,现在余额:6000
父亲要查询,现在余额:6000
老妈要查询,现在余额:6000
老妈要查询,现在余额:6000
儿子要消费,现在余额:6000 儿子消费2000元,现在余额:4000
父亲要查询,现在余额:4000

读写锁是互斥的,但是对于读来说没有互斥性。

也就是说读和写必须分开,但是资源可以同时被几个线程访问。不管是读还是写没有释放锁,其他线程就一直等待锁的释放。

我们来注释父母监督时锁的释放:

lock.readLock().unlock();

儿子要消费,现在余额:10000 儿子消费2000元,现在余额:8000
父亲要查询,现在余额:8000
老妈要查询,现在余额:8000
老妈要查询,现在余额:8000
父亲要查询,现在余额:8000
老妈要查询,现在余额:8000
父亲要查询,现在余额:8000
老妈要查询,现在余额:8000
父亲要查询,现在余额:8000

可以看到儿子花了一次钱后,父母把卡给锁了,儿子不能在花钱,但是父母两个人都可以一直查询卡的余额。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java并发编程专题(七)----(JUC)ReadWriteLock的用法

    前面我们已经分析过JUC包里面的Lock锁,ReentrantLock锁和semaphore信号量机制.Lock锁实现了比synchronized更灵活的锁机制,Reentrantlock是Lock的实现类,是一种可重入锁,都是每次只有一次线程对资源进行处理:semaphore实现了多个线程同时对一个资源的访问:今天我们要讲的ReadWriteLock锁将实现另外一种很重要的功能:读写分离锁. 假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线

  • Java多线程编程之读写锁ReadWriteLock用法实例

    读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可.如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁.总之,读的时候上读锁,写的时候上写锁! 三个线程读数据,三个线程写数据示例: 可以同时读,读的时候不能写,不能同时写,写的时候不能读. 读的时候上读锁,读完解锁:写的时候上写锁,写完解锁. 注意finally解锁. package com.ljq.test.th

  • Java语言ReadWriteLock特性实例测试

    本文研究的主要是ReadWriteLock特性,具体如下. ReadWriteLock几点特性 readLock 与 readLock 不互斥 readLock 与 writeLock 互斥 writeLock 与 readLock 互斥 writeLock 与 writeLock 互斥 举例来说: 线程1, 先拿到readLock, 线程2试图拿readLock, 可以拿到 线程1, 先拿到readLock, 线程2试图拿writeLock, 阻塞等待,直到线程1释放锁之后才可以拿到 线程1,

  • Java多线程之readwritelock读写分离的实现代码

    在多线程开发中,经常会出现一种情况,我们希望读写分离.就是对于读取这个动作来说,可以同时有多个线程同时去读取这个资源,但是对于写这个动作来说,只能同时有一个线程来操作,而且同时,当有一个写线程在操作这个资源的时候,其他的读线程是不能来操作这个资源的,这样就极大的发挥了多线程的特点,能很好的将多线程的能力发挥出来. 在Java中,ReadWriteLock这个接口就为我们实现了这个需求,通过他的实现类ReentrantReadWriteLock我们可以很简单的来实现刚才的效果,下面我们使用一个例子

  • Java并发编程之显示锁ReentrantLock和ReadWriteLock读写锁

    在Java5.0之前,只有synchronized(内置锁)和volatile. Java5.0后引入了显示锁ReentrantLock. ReentrantLock概况 ReentrantLock是可重入的锁,它不同于内置锁, 它在每次使用都需要显示的加锁和解锁, 而且提供了更高级的特性:公平锁, 定时锁, 有条件锁, 可轮询锁, 可中断锁. 可以有效避免死锁的活跃性问题.ReentrantLock实现了 Lock接口: 复制代码 代码如下: public interface Lock {  

  • Java多线程 ReentrantReadWriteLock原理及实例详解

    读写锁ReentrantReadWriteLock概述 读写锁ReentrantReadWriteLock,使用它比ReentrantLock效率更高. 读写锁表示两个锁,一个是读操作相关的锁,称为共享锁:另一个是写操作相关的锁,称为排他锁. 1.读和读之间不互斥,因为读操作不会有线程安全问题 2.写和写之间互斥,避免一个写操作影响另外一个写操作,引发线程安全问题 3.读和写之间互斥,避免读操作的时候写操作修改了内容,引发线程安全问题 多个Thread可以同时进行读取操作,但是同一时刻只允许一个

  • Java concurrency之共享锁和ReentrantReadWriteLock_动力节点Java学院整理

    ReadWriteLock 和 ReentrantReadWriteLock介绍 ReadWriteLock,顾名思义,是读写锁.它维护了一对相关的锁 - - "读取锁"和"写入锁",一个用于读取操作,另一个用于写入操作. "读取锁"用于只读操作,它是"共享锁",能同时被多个线程获取. "写入锁"用于写入操作,它是"独占锁",写入锁只能被一个线程锁获取. 注意:不能同时存在读取锁和写入锁

  • Java基于ReadWriteLock实现锁的应用

    所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系.也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新. 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问.虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点.从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高.在实践中,

  • Java基于redis实现分布式锁

    为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已

  • java基于mongodb实现分布式锁的示例代码

    目录 原理 实现 使用 原理 通过线程安全findAndModify 实现锁 实现 定义锁存储对象: /** * mongodb 分布式锁 */ @Data @NoArgsConstructor @AllArgsConstructor @Document(collection = "distributed-lock-doc") public class LockDocument { @Id private String id; private long expireAt; privat

  • Java基于注解实现的锁实例解析

    背景 某些场景下,有可能一个方法不能被并发执行,有可能一个方法的特定参数不能被并发执行.比如不能将一个消息发送多次,创建缓存最好只创建一次等等.为了实现上面的目标我们就需要采用同步机制来完成,但同步的逻辑如何实现呢,是否会影响到原有逻辑呢? 嵌入式 这里讲的嵌入式是说获取锁以及释放锁的逻辑与业务代码耦合在一起,又分分布式与单机两种不同场景的不同实现. 单机版本 下面方法,每个productId不允许并发访问,所以这里可以直接用synchronized来锁定不同的参数. @Service publ

  • Java多线程中Lock锁的使用总结

    多核时代 摩尔定律告诉我们:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍.换言之,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上.然而最近摩尔定律似乎遇到了麻烦,目前微处理器的集成度似乎到了极限,在目前的制造工艺和体系架构下很难再提高单个处理器的速度了,否则它就被烧坏了.所以现在的芯片制造商改变了策略,转而在一个电路板上集成更多的处理器,也就是我们现在常见的多核处理器. 这就给软件行业带来麻烦(也可以说带来机会,比如说就业机会,呵呵).原来的情况

  • Java concurrency之公平锁(一)_动力节点Java学院整理

    基本概念 本章,我们会讲解"线程获取公平锁"的原理:在讲解之前,需要了解几个基本概念.后面的内容,都是基于这些概念的:这些概念可能比较枯燥,但从这些概念中,能窥见"java锁"的一些架构,这对我们了解锁是有帮助的. 1. AQS -- 指AbstractQueuedSynchronizer类.     AQS是java中管理"锁"的抽象类,锁的许多公共方法都是在这个类中实现.AQS是独占锁(例如,ReentrantLock)和共享锁(例如,Sem

  • 浅谈Java虚拟机对内部锁的四种优化方式

    自Java 6/Java 7开始,Java虚拟机对内部锁的实现进行了一些优化.这些优化主要包括锁消除(Lock Elision).锁粗化(Lock Coarsening).偏向锁(Biased Locking)以及适应性锁(Adaptive Locking).这些优化仅在Java虚拟机server模式下起作用(即运行Java程序时我们可能需要在命令行中指定Java虚拟机参数"-server"以开启这些优化). 1 锁消除 锁消除(Lock Elision)是JIT编译器对内部锁的具体实

  • java基于ConcurrentHashMap设计细粒度实现代码

    细粒度锁: java中的几种锁:synchronized,ReentrantLock,ReentrantReadWriteLock已基本可以满足编程需求,但其粒度都太大,同一时刻只有一个线程能进入同步块,这对于某些高并发的场景并不适用.比如银行客户a向b转账,c向d转账,假如这两个线程并发,代码其实不需要同步.但是同时有线程3,e向b转账,那么对b而言必须加入同步.这时需要考虑锁的粒度问题,即细粒度锁. 网上搜寻了一些关于java细粒度锁的介绍文章,大部分是提供思路,比如乐观锁,String.i

  • Java多线程之显示锁和内置锁总结详解

    总结多线程之显示锁和内置锁 Java中具有通过Synchronized实现的内置锁,和ReentrantLock实现的显示锁,这两种锁各有各的好处,算是互有补充,这篇文章就是做一个总结. *Synchronized* 内置锁获得锁和释放锁是隐式的,进入synchronized修饰的代码就获得锁,走出相应的代码就释放锁. synchronized(list){ //获得锁 list.append(); list.count(); }//释放锁 通信 与Synchronized配套使用的通信方法通常

随机推荐