C语言实现红黑树详细步骤+代码

目录
  • 红黑树的概念
  • 红黑树的性质
  • 红黑树的定义与树结构
  • 插入
  • 新增结点插入后维护红黑树性质的主逻辑
    • 拆解讨论:
  • 旋转
  • 验证
  • 红黑树与AVl树的比较
  • 红黑树的应用
  • 总结

红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的

概念总结:
红黑树是二叉搜索树的升级,结点里面存放的成员col标记当前结点的颜色,它的最长路径最多是最短路径的二倍,红黑树通过各个结点着色方式的限制接近平衡二叉树,但是不同于AVL的是AVL是一颗高度平衡的二叉树,红黑树只是接近平衡

红黑树的性质

每个结点不是红色就是黑色根节点是黑色的如果一个节点是红色的,则它的两个孩子结点是黑色的对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

红黑树性质总结:

1、红黑树结点的颜色只能是红色或者黑色
2、红黑树根节点必须是黑色
3、红黑树并没有连续的红色结点
4、红黑树中从根到叶子的每一条路径都包含相同的黑色结点
5、叶子是黑色,表示空的位置

最长路径和最短路径概念:

最短路径:从根结点到叶子结点每一条路径的结点颜色都是黑色的不包含红色

最长路径:红黑交替,黑色结点和红色结点的个数相等

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

假设结点个数为N,那么最短路径就是logN,最长路径就是2 * logN,所有并不存在最长路径超过最短路径2倍的情况

红黑树的定义与树结构

//枚举红黑颜色
enum colour
{
	RED,
	BLACK,
};

//定义红黑树结点结构
template<class K,class V>
struct RBTreeNode
{
	//构造
	RBTreeNode(const pair<K, V>& kv = {0,0})
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		,_col(BLACK)
	{ }
	//定义三叉链
	RBTreeNode<K, V>* _left; //左孩子
	RBTreeNode<K, V>* _right;//右孩子
	RBTreeNode<K, V>* _parent;  //父亲
	pair<K, V> _kv;  //pair对象
	//节点的颜色
	colour _col;  //定义枚举变量
};

//定义红黑树
template<class K, class V>
class RBTree
{
		typedef RBTreeNode<K, V> Node;
	public:
		//构造
		RBTree()
			:_root(nullptr)
		{}
	private:
		Node* _root;  //定义树的根节点
};

插入

插入过程类似搜索树的插入,重要的是维护红黑树的性质

pair<Node*, bool> Insert(const pair<K, V>& kv)
{
	if (!_root) //空树处理
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return { _root, true };
	}
	//二叉搜索树的插入逻辑
	Node* cur = _root, * parent = nullptr;
	while (cur)
	{
		if (cur->_kv.first < kv.first)//插入结点比当前结点大
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first) //插入结点比当前结点小
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return { cur, false }; //插入失败
		}

	}
	cur = new Node(kv);
	cur->_col = RED;  //新增结点颜色默认设置为RED
	//判断插入结点是否在parent的左边或者右边
	if (parent->_kv.first > kv.first)  //左边
	{
		parent->_left = cur;
		cur->_parent = parent;
	}
	else     //右边
	{
		parent->_right = cur;
		cur->_parent = parent;
	}

	/* 红黑树性质处理:
		如果这棵树一开始是符合红黑树的性质,但在新增结点之后,
		导致失去了红黑树的性质,这里需要控制结点的颜色和限制
		每条路径上黑色结点的个数,以上情况都要处理
    */

	while (parent && parent->_col == RED) //父亲存在且父亲为红色
	{
		Node* grandfather = parent->_parent;  //祖父
		//父亲出现在祖父的左边需要考虑的情况
		if(parent == grandfather ->left)
		{
			//1、uncle存在,uncle为红色
			/*
			   如果parent和uncle都存在并且都为红色这是情况一,
			   需要将parent和uncle的颜色变成红色,祖父颜色变成黑色
			   更新cur、parent、grandfather、uncle 继续向上调整
			*/

			//2、uncle不存在
			/*  这里考虑两种旋转情况,直线单旋转,折线双旋
				/*
					cur出现在parent的左边 ,右单旋转
					经过右单旋后,parent去做树的根,祖父做为右子树
					//调节结点颜色
					parent->_col = BLACK;
					grandfather->_col = RED;
				*/

				/*
					cur出现在parent的右边,左右双旋
					经过双旋后,cur作为树的根,grandfather为右子树
					调节结点颜色
					cur->_col = BLACK;
					grandfather->_col = RED;
				*/
			*/ 

		}
		else  //父亲出现在祖父的右边
		{
			Node* uncle = grandfather->_left; //叔叔在左子树
			/*
			情况一:叔叔存在,且叔叔和父亲都是红色,那么就需要将父亲
			和叔叔结点的颜色变成黑色,再将祖父的颜色变成红色,
			继续向上调整,更新孩子、父亲、祖父、叔叔的位置
			*/

			/*
				情况二:叔叔不存在
				/*
				 	1、新增结点出现在父亲的右边,直线情况,左单旋处理
				 	旋转完后parent去做父亲的根,grandfather做父亲
				 	的左子树
							//调节颜色,根为黑,左右孩子为红
					2、新增结点出现在父亲的左边,会出现折现的情况,
					引发双旋,旋转完后,cur变成根,
					parent和grandfaher去做cur的左右孩子
						   //调节颜色,根结点为黑,左右孩子为红
				*/
			*/
		}

	}

	//如果父亲不存在为了保证根结点是黑色的,这里一定得将根结点处理为黑色
	_root->_col = BLACK;
}

新增结点插入后维护红黑树性质的主逻辑

//1、父亲一定存在的情况,叔叔存在/不存在 父亲叔叔结点颜色为红色
while (parent && parent->_col == RED) //父亲存在且父亲为红色
{
	Node* grandfather = parent->_parent;  //祖父
	//如果父亲和叔叔结点颜色都是红色
	if (parent == grandfather->_left)
	{
		Node* uncle = grandfather->_right;
		if (uncle && uncle->_col == RED)  //对应情况:uncle存在且为红
		{
			//处理:父亲和叔叔变成黑色,祖父变成红色,继续向上调整
			uncle->_col = parent->_col = BLACK;
			grandfather->_col = RED;

			//向上调整
			cur = grandfather;  //调整孩子
			parent = cur->_parent;//调整父亲

		}
		else   //uncle不存在,uncle存在且为黑
		{
			//直线情况(cur在parent的左边):只考虑单旋,以grandfather为旋转点进行右单旋转,
			//旋转完后将祖父的颜色变成红色,将父亲的颜色变成黑色
			if (parent->_left == cur)
			{
				RotateR(grandfather);
				parent->_col = BLACK;
				grandfather->_col = RED;
			}
			else  //parent->_right == cur
			{
				//折线情况(cur在parent的右边):这里会引发双旋
				RotateL(parent);  //以parent为旋转点进行左单旋
				RotateR(grandfather); //以grandfather为旋转点进行右单旋转
				//旋转完后cur会去做树的根,那么设置为黑色,
				//为了保证每条路径的黑色结点个数相同,grandfather结点颜色设置为红
				cur->_col = BLACK;
				grandfather->_col = RED;  //黑色	结点个数相同
			}
		}
	}
	else //父亲在右子树
	{
			Node* uncle = grandfather->_left; //叔叔在左子树
			if (uncle&& uncle->_col == RED)  //情况一处理:叔叔存在,且叔叔的颜色是红色的(包含了父亲的颜色是红色的情况)
			{
				//根据情况一处理即可:叔叔和父亲变黑,
				//祖父变红(目的是为了每条路径的黑色结点个数相同),继续向上
				cur = grandfather;  //孩子
				parent = cur->_parent;//父亲

			}
			else //叔叔不存在
			{
				if (cur == parent->_right)  //新增结点在父亲的右边,直线情况左单旋处理
				{
					//左单旋转,以grandfather为旋转点,旋转完后parent去做新的根,grandfather去做左子树
					RotateL(grandfather);
					//调节颜色
					grandfather->_col = RED;
					parent->_col = BLACK;
				}
				else //新增结点在父亲的左边,折线情况,引发双旋
				{
					//处理:以parenrt为旋转点做右单旋,再以grandfather为旋转点做左单旋
					RotateR(parent);  //右旋
					RotateL(grandfather); //左旋
					parent->_col = grandfather->_col = RED;
					cur->_col = BLACK;
				}
				break;
			}

		}

	_root->_col = BLACK;
}

拆解讨论:

以下只列举parent在grandfather左边的情况,而parent在grandfather右边的情况处理方式只是反过来的,读者可以自行画图,这里仅留参考代码

Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)  //对应情况:uncle存在且为红
{
	//处理:父亲和叔叔变成黑色,祖父变成红色,继续向上调整
	uncle->_col = parent->_col = BLACK;
	grandfather->_col = RED;

	//向上调整
	cur = grandfather;  //调整孩子
	parent = cur->_parent;//调整父亲

}

else   //uncle不存在,uncle存在且为黑
{
	//直线情况(cur在parent的左边):只考虑单旋,以grandfather为旋转点进行右单旋转,
	//旋转完后将祖父的颜色变成红色,将父亲的颜色变成黑色
	if (parent->_left == cur)
	{
		RotateR(grandfather);
		parent->_col = BLACK;
		grandfather->_col = RED;
	}
	else  //parent->_right == cur
	{
		//双旋转
	}
}

//折线情况(cur在parent的右边):这里会引发双旋
RotateL(parent);  //以parent为旋转点进行左单旋
RotateR(grandfather); //以grandfather为旋转点进行右单旋转
//旋转完后cur会去做树的根,那么设置为黑色,
//为了保证每条路径的黑色结点个数相同,grandfather结点颜色设置为红
cur->_col = BLACK;
grandfather->_col = RED;

旋转

void RotateR(Node* parent) //右单旋
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR) subLR->_parent = parent;  //防止subLR为nullptr

		subL->_right = parent;
		Node* parent_parent = parent->_parent; //指针备份
		parent->_parent = subL;
		if (_root == parent) //如果parent就是树的根
		{
			_root = subL;  //subL取代parent
			_root->_parent = nullptr;
		}
		else  //如果parent并不是树的根
		{
			if (parent_parent->_left == parent) parent->_left = subL;
			else parent_parent->_right = subL;

			subL->_parent = parent_parent; //subL去做parent_parent的孩子
		}
	}

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL) subRL->_parent = parent;

		subR->_left = parent;
		Node* parent_parent = parent->_parent;
		parent->_parent = subR;

		if (_root == parent)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parent_parent->_left == parent) parent_parent->_left = subR;
			else parent_parent->_right = subR;

			subR->_parent = parent_parent;
		}
	}

验证

/*
	红黑树的几点性质在于:
	1、根结点必须是红色的
	2、不会出现连续的红色结点
	3、所有路径的黑色结点个数是相同的
*/
bool _CheckBlance(Node* root, int isBlackNum, int count)
{
	if (!root)
	{
		if (isBlackNum != count)
		{
			printf("黑色结点个数不均等\n");
			return false;
		}
		return true; //遍历完整棵树,如果以上列举的非法情况都不存在就返回true
	}
	//检查是否出现连续的红色结点
	if (root->_col == RED && root->_parent->_col == RED)
	{
		printf("出现了连续的红色结点\n");
		return false;
	}
	//走前序遍历的过程中记录每一条路径黑色结点的个数
	if (root->_col == BLACK) count++;

	//递归左右子树
	return _CheckBlance(root->_left, isBlackNum, count) &&
			_CheckBlance(root->_right, isBlackNum, count);
}

//验证红黑树
bool CheckBlance()
{
	if (!_root) return true;  //树为null

	//根结点是黑色的
	if (_root->_col != BLACK)
	{
		printf("根结点不是黑色的\n");
		return false;
	}
	//每一条路径黑色结点的个数必须是相同的,
	int isBlcakNum = 0;
	Node* left = _root;
	while (left)
	{
		if (left->_col == BLACK) isBlcakNum++; // 统计某一条路径的所以黑色结点个数
		left = left->_left;
	}
	//检查连续的红色结点,检查每一条路径的黑色结点个数是否相等
	return _CheckBlance(_root, isBlcakNum ,0);
}

红黑树与AVl树的比较

红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的
时间复杂度都是O( log n),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

红黑树的应用

C++ STL库 – map/set、mutil_map/mutil_setJava 库linux内核其他一些库

完整代码博主已经放在git上了,读者可以参考
红黑树实现.

总结

到此这篇关于C语言实现红黑树详细步骤+代码的文章就介绍到这了,更多相关C语言红黑树内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言实现红黑树的实例代码

    因为看内核的时候感觉红黑树挺有意思的,所以利用周末的时间来实现一下玩玩.红黑树的操作主要是插入和删除,而删除的时候需要考虑的情况更多一些.具体的操作就不在这里罗嗦了,百度文库里面有一个比较有好的文章,已经说的很明白了. 在看具体的操作的时候有的人可能感觉有些情况是没有考虑到的(如果没有这种感觉的人很有可能根本没有仔细地想).但是那些"遗漏"的情况如果存在的话,操作之前的红黑树将违反那几个规则. 写代码的时候很多次因为少考虑情况而导致错误,细节比较多,刚开始rb_node中没有指向父节点

  • C语言实现红黑树详细步骤+代码

    目录 红黑树的概念 红黑树的性质 红黑树的定义与树结构 插入 新增结点插入后维护红黑树性质的主逻辑 拆解讨论: 旋转 验证 红黑树与AVl树的比较 红黑树的应用 总结 红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black. 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的 概念总结:红黑树是二叉搜索树的升级,结点里面存放的成员col标记当前结点的颜色,它的最长路径最多是最短

  • C语言实现手写Map(数组+链表+红黑树)的示例代码

    目录 要求 结构 红黑树和链表转换策略 hash 使用 要求 需要准备数组集合(List) 数据结构 需要准备单向链表(Linked) 数据结构 需要准备红黑树(Rbtree)数据结构 需要准备红黑树和链表适配策略(文章内部提供,可以自行参考) 建议先去阅读我博客这篇文章C语言-手写Map(数组+链表)(全功能)有助于理解 hashmap使用红黑树的原因是: 当某个节点值过多的时候那么链表就会非常长,这样搜索的时候查询速度就是O(N) 线性查询了,为了避免这个问题我们使用了红黑树,当链表长度大于

  • C语言实现手写红黑树的示例代码

    目录 前沿 红黑树代码 测试 前沿 写C的红黑树前建议先看我博客这篇文章Java-红黑树 主要看原理 红黑树代码 #ifndef STUDY_RBTREE_H #define STUDY_RBTREE_H #include "charkvlinked.h" typedef int boolean;//定义一个布尔类型 #define TRUE 1 #define FALSE 0 enum COL{RED=0,BLACK=1}; typedef struct rBNode { char

  • C++实现红黑树应用实例代码

    红黑树的应用: 1.利用key_value对,快速查找,O(logn) socket与客户端id之间,形成映射关系(socket, id) 内存分配管理 一整块内存,不断分配小块 每分配一次,就加入到红黑树 释放的时候,在红黑树找到相应的块,然后去释放 2.利用红黑树中序遍历是顺序的特性 进程的调度 进程处于等待状态,每个进程都有等待的时间,在未来某个时刻会运行,将这些进程利用红黑树组织起来 在某个时刻,找到对应时刻的节点,然后中序遍历,就可以把该节点之前的节点全部运行到. 3.nginx定时器

  • Java数据结构之红黑树的真正理解

    真正的帮助大家理解红黑树: 一.红黑树所处数据结构的位置: 在JDK源码中, 有treeMap和JDK8的HashMap都用到了红黑树去存储 红黑树可以看成B树的一种: 从二叉树看,红黑树是一颗相对平衡的二叉树 二叉树-->搜索二叉树-->平衡搜索二叉树--> 红黑树 从N阶树看,红黑树就是一颗 2-3-4树 N阶树-->B(B-)树 故我提取出了红黑树部分的源码,去说明红黑树的理解 看之前,理解红黑树的几个特性,后面的操作都是为了让树符合红黑树的这几个特性,从而满足对查找效率的O

  • PHP实现绘制二叉树图形显示功能详解【包括二叉搜索树、平衡树及红黑树】

    本文实例讲述了PHP实现绘制二叉树图形显示功能.分享给大家供大家参考,具体如下: 前言: 最近老师布置了一个作业:理解并实现平衡二叉树和红黑树,本来老师是说用C#写的,但是我学的C#基本都还给老师了,怎么办?那就用现在最熟悉的语言PHP来写吧! 有一个问题来了,书上在讲解树的时候基本上会给出形象的树形图.但是当我们自己试着实现某种树,在调试.输出的时候确只能以字符的形式顺序地输出.这给调试等方面带来了很大的不便.然后在各种百度之后,我发现利用PHP实现二叉树的图形显示的资源几乎是零!好吧,那我就

  • 利用Java实现红黑树

    目录 1.红黑树的属性 2.旋转 3.插入 4.删除 5.所有代码 6.演示 1.红黑树的属性 红黑树是一种二分查找树,与普通的二分查找树不同的一点是,红黑树的每个节点都有一个颜色(color)属性.该属性的值要么是红色,要么是黑色. 通过限制从根到叶子的任何简单路径上的节点颜色,红黑树确保没有比任何其他路径长两倍的路径,从而使树近似平衡. 假设红黑树节点的属性有键(key).颜色(color).左子节点(left).右子节点(right),父节点(parent). 一棵红黑树必须满足下面有下面

  • Java实现红黑树(平衡二叉树)的详细过程

    目录 前言 红黑二叉查找树 2-3树 2-3树的插入操作 实现红黑二叉树 结尾 前言 在实现红黑树之前,我们先来了解一下符号表. 符号表的描述借鉴了Algorithms第四版,详情在:https://algs4.cs.princeton.edu/home/ 符号表有时候被称为字典,就如同英语字典中,一个单词对应一个解释,符号表有时候又被称之为索引,即书本最后将术语按照字母顺序列出以方便查找的那部分.总的来说,符号表就是将一个键和一个值联系起来,就如Python中的字典,JAVA中的HashMap

  • C语言文件操作详解以及详细步骤

    目录 一.为什么使用文件? 二.什么是文件? 1.程序文件 2.数据文件 3.文件名 三.文件的打开和关闭 1.文件指针 2.文件的打开和关闭 4.文件的顺序读写 四.fseek函数 五.ftell函数 六.rewind函数 七.文本文件和二进制文件 八.文件读取结束的判定 1.feof函数的错误使用 九.文件缓冲区 总结 一.为什么使用文件? 当我们在编写一个项目的时候,自然而然想到要把之前写入的数据保存起来.而只有我们自己选择删除数据的时候,数据才不复存在.这就涉及到了数据持久化的问题,我们

随机推荐