opencv实现答题卡识别

本文实例为大家分享了opencv实现答题卡识别的具体代码,供大家参考,具体内容如下

"""
识别答题卡
"""
 
import cv2
import numpy as np
 
def showImg(img_name, img):
cv2.imshow(img_name, img)
cv2.waitKey()
cv2.destroyAllWindows()
 
def get_max_rect(sorted_cnts):
for cnt in sorted_cnts:
# 轮廓近似
possible_cnts = []
epsilon = 0.1 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
if len(approx) == 4:
possible_cnts.append(cnt)
possible_cnts = sorted(possible_cnts, key=lambda x: cv2.arcLength(x, True))
return possible_cnts
 
def get_max_bounding_rect(possible_cnts):
# for cnt in possible_cnts:
# x, y, w, h = cv2.boundingRect(cnt)
 
sorted_cnts = sorted(possible_cnts, key=lambda cnt: cv2.boundingRect(cnt)[2]*cv2.boundingRect(cnt)[3], reverse=True)
print(sorted_cnts[0])
 
def show_countour(img, cnt):
img_copy = img.copy()
cv2.drawContours(img_copy, cnt, -1, (0,255, 0), 3)
showImg("img_copy", img_copy)
 
 
# 读取答题卡图片,并显示
answer_sheet_img = cv2.imread("t1.jpg")
print(answer_sheet_img.shape)
showImg("answer_sheet_img", answer_sheet_img)
 
# 高斯滤波,去除噪音
blur = cv2.GaussianBlur(answer_sheet_img,(5,5),0)
showImg("blur", blur)
 
# 图像转灰度值
sheet_gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
showImg("sheet_gray", sheet_gray)
 
# 二值化
retval, sheet_threshold = cv2.threshold(sheet_gray,177, 255, cv2.THRESH_BINARY)
# print(type(sheet_threshold), sheet_threshold)
showImg("sheet_threshold", sheet_threshold)
 
# 边界检测
edges = cv2.Canny(sheet_threshold, 100, 200)
showImg("edges", edges)
# print(type(edges))
 
# 寻找轮廓
copy_edges = edges.copy()
img_copy = answer_sheet_img.copy()
img, cnts, hierarchy = cv2.findContours(copy_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img_copy, cnts, -1, (0,0,255), 1)
showImg("img_copy", img_copy)
 
# 对所有轮廓加一个外接矩形,找最大的外接矩形
max_area_index = None
area = 0
for index, cnt in enumerate(cnts):
x, y, w, h = cv2.boundingRect(cnt)
if w*h > area:
max_area_index = index
show_countour(answer_sheet_img, cnts[max_area_index])
 
# 仿射,拿到答题卡主要部位
x, y, w, h = cv2.boundingRect(cnts[max_area_index]) # 最大的边界
cv2.rectangle(answer_sheet_img, (x, y),(x+w, y+h), (0,0,255), 2)
showImg("answer_sheet_img", answer_sheet_img)
pts1 = np.float32([[x,y], [x+w, y], [x+w, y+h]])
pts2 = np.float32([[0,0], [w, 0], [w, h]])
 
M = cv2.getAffineTransform(pts1, pts2)
sheet_threshold_copy = sheet_threshold.copy()
dst = cv2.warpAffine(sheet_threshold_copy, M, (w, h))
showImg("dst", dst)
print(answer_sheet_img.shape)
part_sheet_img = answer_sheet_img[y:y+h, x:x+w]
showImg("part_sheet_img", part_sheet_img)
 
# 对答案区域灰度,二值,找轮廓
part_answer_gray = cv2.cvtColor(part_sheet_img, cv2.COLOR_BGR2GRAY) # 灰度
ret, threshold_answer = cv2.threshold(part_answer_gray, 175, 255, cv2.THRESH_BINARY)
showImg("threshold_answer", threshold_answer)
 
img, answer_cnts, x = cv2.findContours(threshold_answer, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
part_sheet_img_copy = part_sheet_img.copy()
cv2.drawContours(part_sheet_img_copy, answer_cnts, -1, (0, 0, 255), 1)
showImg("dst_copy", part_sheet_img_copy)
 
# 对所有轮廓找外接矩形,想过滤掉不合适的矩形
print("画矩形")
answer_filter_cnts = []
answer_circles = []
img_ = part_sheet_img.copy()
for cnt in answer_cnts:
x, y, w, h = cv2.boundingRect(cnt)
if 30<w<40 and 30<h<40:
print(x, y, w, h)
circle_x = int(x + w/2)
circle_y = int(y+h/2)
r = int((w+h)/4)
answer_circles.append((circle_x, circle_y, r))
answer_filter_cnts.append(cnt)
 
answer_filter_cnts = np.array(answer_filter_cnts)
cv2.drawContours(img_, answer_filter_cnts, -1, (0, 0, 255), 1)
# cv2.rectangle(img, (x, y), (x+w, y+h), (0,255,0), 2)
showImg("img_", img_)
print("geshu", len(answer_circles))
 
 
# 从answer_circles中取25个
mask_dict = {1:[],2:[], 3:[], 4:[],5:[]} # 一共不一定是25个圆,将圆按照题目行分类,
sorted_y_answer_circles = sorted(answer_circles, key=lambda circle: circle[1])
print("sorted_y_answer_circles", sorted_y_answer_circles)
set_num = 1
for index, circle in enumerate(sorted_y_answer_circles):
if index == 0:
mask_dict[1].append(circle)
else:
if circle[1] - sorted_y_answer_circles[index-1][1] > 30:
set_num += 1
mask_dict[set_num].append(circle)
else:
mask_dict[set_num].append(circle)
 
print("mask_dict", mask_dict)
 
for k, mask_circle_list in mask_dict.items(): # 对每一个题目,保留五个答案,多余的舍去
if len(mask_circle_list) == 5:
sorted_x_mask_circle_list = sorted(mask_circle_list, key=lambda x:x[0])
mask_dict[k]=sorted_x_mask_circle_list
else:
sorted_x_mask_circle_list = sorted(mask_circle_list, key=lambda x: x[0])
sorted_x_mask_circle_list_5 = []
for i, c in enumerate(sorted_x_mask_circle_list):
if i == 0:
sorted_x_mask_circle_list_5.append(c)
else:
if abs(c[0] - sorted_x_mask_circle_list[i-1][0]) < 10:
pass
else:
sorted_x_mask_circle_list_5.append(c)
mask_dict[k] = sorted_x_mask_circle_list_5
 
print("mask_dict", mask_dict)
 
# mask_dict 分好组的按照顺序的圈圈
 
# 做掩码
mask_img = np.zeros_like(part_sheet_img, dtype='uint8') # 全黑图
showImg("threshold_answer", threshold_answer)
threshold_answer = np.array(threshold_answer)
# mask_dict = sorted(mask_dict, key=lambda x: mask_dict.keys())
all_scores = [] # 所有答案处的评分
for exercise_num, circle_mask_list in mask_dict.items():
# 对于每一题
score_list = [] # 每一题的每个选项的评分,涂黑的为选择的,值越接近0, 评分较低
for circle_mask in circle_mask_list:
mask_img_copy = cv2.cvtColor(mask_img, cv2.COLOR_BGR2GRAY)
# 做一个当前圆的掩码:
cv2.circle(mask_img_copy, (circle_mask[0], circle_mask[1]), circle_mask[2], (255, 255, 255), -1)
print(threshold_answer.shape, mask_img_copy.shape)
mask_img_ = cv2.bitwise_and(threshold_answer, threshold_answer, mask=mask_img_copy)
score = mask_img_.sum()
score_list.append(score)
# showImg("mask_img_", mask_img_)
all_scores.append(score_list)
 
 
all_score_np = np.array(all_scores)
s = np.argmin(all_score_np, axis=1) # 找评分最低处即为选择项
 
answer_dict = {
0: "A",
1: "B",
2: "C",
3: "D",
4: "E"
}
 
for index, v in enumerate(s):
print("第%s题的答案是%s" %(index+1, answer_dict[v]))

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Opencv图像识别实现答题卡识别示例详解

    目录 1. 项目分析 2.项目实验 3.项目结果 总结 在观看唐宇迪老师图像处理的课程中,其中有一个答题卡识别的小项目,在此结合自己理解做一个简单的总结. 1. 项目分析 首先在拿到项目时候,分析项目目的是什么,要达到什么样的目标,有哪些需要注意的事项,同时构思实验的大体流程. 图1. 答题卡测试图像 比如在答题卡识别的项目中,针对测试图片如图1 ,首先应当实现的功能是: 能够捕获答题卡中的每个填涂选项. 将获取的填涂选项与正确选项做对比计算其答题正确率. 2.项目实验 在对测试图像进行形态学操

  • python OpenCV实现答题卡识别判卷

    本文实例为大家分享了python OpenCV实现答题卡识别判卷的具体代码,供大家参考,具体内容如下 完整代码: #导入工具包 import numpy as np import argparse import imutils import cv2 # 设置参数 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", default="./images/test_03.png"

  • 使用 OpenCV-Python 识别答题卡判卷功能

    任务 识别用相机拍下来的答题卡,并判断最终得分(假设正确答案是B, E, A, D, B) 主要步骤 轮廓识别--答题卡边缘识别 透视变换--提取答题卡主体 轮廓识别--识别出所有圆形选项,剔除无关轮廓 检测每一行选择的是哪一项,并将结果储存起来,记录正确的个数 计算最终得分并在图中标注 分步实现 轮廓识别--答题卡边缘识别 输入图像 import cv2 as cv import numpy as np # 正确答案 right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4

  • opencv实现答题卡识别

    本文实例为大家分享了opencv实现答题卡识别的具体代码,供大家参考,具体内容如下 """ 识别答题卡 """   import cv2 import numpy as np   def showImg(img_name, img): cv2.imshow(img_name, img) cv2.waitKey() cv2.destroyAllWindows()   def get_max_rect(sorted_cnts): for cnt in

  • Python+Opencv答题卡识别用例详解

    使用Python3和Opencv识别一张标准的答题卡.大致的过程如下: 1.读取图片 2.利用霍夫圆检测,检测出四个角的黑圆位置,从确定四个角的位置 3.利用透视变换和四个角的位置,矫正图片(直接用的网上的图片,没有拍照,所以这一步没有实现) 4.裁剪四个边框,获取边框上小黑格的位置 5.根据小黑格的位置确定每个涂卡区域的位置 6.将答题卡腐蚀和膨胀,遍历所有的格子的区域,计算每个区域内像素值为0的个数,若数量达到某个值,那么就确认这个格子是被黑笔涂过,并记录该位置的题目选项. 具体的实现 一.

  • Python答题卡识别并给出分数的实现代码

      哈喽大家好,这里是滑稽研究所.看过我们图像处理系列的朋友,应该知道识别答题卡那期文章.其中利用opencv框架,完美的实现了答题卡填涂区域的识别.在后台有小伙伴想要我完善一下判断选项对错并打分的功能,本期我们就来实现一下.   那么我们来复习一下往期的代码原理.我们需要对图片素材进行灰度化处理.透视变换.轮廓检测.腐蚀膨胀处理.区域分割.边框计算.区域计算.实际上我们是通过像素面积的过滤.填涂区域优化和获取选项坐标来完成答题卡的识别的. 素材:   那么在获取到答题卡的填涂区域之后就好办了.

  • python利用opencv如何实现答题卡自动判卷

    目录 1.设定答题卡模板 2.读取答题卡图像并对图像进行灰度化处理 3.高斯模糊图像去噪点 4.使用大津法二值分割图像 5.使用开运算去噪点 6.使用canny边缘检测算法 7.筛选答题区域轮廓,透视变换矫正目标区域 使用摄像头实时判卷部分 总结 1.设定答题卡模板 该图像为答题卡的答题区域,黑色边框是为了能够在各种环境中轻易的检测,左部分和上部分的黑色矩形,是为能够定位到答题选项的坐标而设置,同时题目数量为20×3共60道选择题,在进行批改试卷之前,需要手动输入该次考试的正确答案作为模板来对识

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • jquery+css3问卷答题卡翻页动画效果示例

    CSS3+jQuery制作立体翻页时间展示动画特效.该翻页插件的外观非常华丽喜庆,非常适合产品活动或者育儿网站使用. 这个选项调查的特效以选项卡的形式,每答完一道题目自动切换到下一条,颇具特色.使用jQuery和CSS3,适合HTML5浏览器. 代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatib

  • python+opencv实现动态物体识别

    注意:这种方法十分受光线变化影响 自己在家拿着手机瞎晃的成果图: 源代码: # -*- coding: utf-8 -*- """ Created on Wed Sep 27 15:47:54 2017 @author: tina """ import cv2 import numpy as np camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()

随机推荐