对pandas通过索引提取dataframe的行方法详解
一、假设有这样一个原始dataframe
二、提取索引
(已经做了一些操作将Age为NaN的行提取出来并合并为一个dataframe,这里提取的是该dataframe的索引,道理和操作是相似的,提取的代码没有贴上去是为了不显得太繁杂让读者看着繁琐)
>>> index = unknown_age_Mr.index.tolist() #记得转换为list格式
三、提取索引对应的原始dataframe的行
使用iloc函数将数据块提取出
>>> age_df.iloc[index, :] # 这里的 :可以改为具体的索引,就可以提取具体列,详情可以看iloc的介绍
如果打印出来就是下面的样子了
提取出来后就可以进行替换或其他操作了
以上这篇对pandas通过索引提取dataframe的行方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pandas DataFrame 行列索引及值的获取的方法
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd
-
浅析pandas 数据结构中的DataFrame
DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型.在其底层是通过二维以及一维的数据块实现. 1. DataFrame 对象的构建 1.1 用包含等长的列表或者是NumPy数组的字典创建DataFrame对象 In [68]: import pandas as pd In [69]: from pandas import Series,DataFrame # 建立包含等长列表的字典类型 In [7
-
Python Pandas数据结构简单介绍
Series Series 类似一维数组,由一组数据及一组相关数据标签组成.使用pandas的Series类即可创建. import pandas as pd s1 = pd.Series(['a', 'b', 'c,', 'd']) print(s1) #输出: 0 a # 1 b # 2 c # 3 d # dtype: object 上面是传入一个列表实现,上面的0,1,2,3就是数据的默认标签.另外可以通过index属性自定义标签. s2 = pd.Series(['1', '2', '
-
pandas 数据结构之Series的使用方法
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrame In [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [1
-
pandas DataFrame 删除重复的行的实现方法
1. 建立一个DataFrame C=pd.DataFrame({'a':['dog']*3+['fish']*3+['dog'],'b':[10,10,12,12,14,14,10]}) 2. 判断是否有重复项 用duplicated( )函数判断 C.duplicated() 3. 有重复项,则可以用drop_duplicates()移除重复项 C.drop_duplicates() 4. Duplicated( )和drop_duplicates( )方法是以默认的方式判断全部的列(上面
-
Python pandas.DataFrame调整列顺序及修改index名的方法
1. 从字典创建DataFrame >>> import pandas >>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],'mark_date':['2017-03-07','2017-03-07','2017-03-07']} >>> df = pandas.
-
对pandas通过索引提取dataframe的行方法详解
一.假设有这样一个原始dataframe 二.提取索引 (已经做了一些操作将Age为NaN的行提取出来并合并为一个dataframe,这里提取的是该dataframe的索引,道理和操作是相似的,提取的代码没有贴上去是为了不显得太繁杂让读者看着繁琐) >>> index = unknown_age_Mr.index.tolist() #记得转换为list格式 三.提取索引对应的原始dataframe的行 使用iloc函数将数据块提取出 >>> age_df.iloc[in
-
Python Pandas读写txt和csv文件的方法详解
目录 一.文本文件 1. read_csv() 2. to_csv() 一.文本文件 文本文件,主要包括csv和txt两种等,相应接口为read_csv()和to_csv(),分别用于读写数据 1. read_csv() 格式代码: pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False
-
Python实现提取音乐频谱的方法详解
目录 前言 1.准备 2.频谱展示 前言 你有没有经常好奇一些音乐软件的频谱特效是怎么做的,为什么做的这么好看?有没有想试试自己提取音乐频谱并可视化展现出来?今天,咱就结合上次的音乐剪辑操作: 3行Python代码实现剪辑音乐 来简单粗暴地可视化下面这首歌曲的频谱! 1.准备 开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装. Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(c
-
Python快速从视频中提取视频帧的方法详解
目录 1.抽取视频帧 2.多线程方法 3.整体代码 补充 Python快速提取视频帧(多线程) 今天介绍一种从视频中抽取视频帧的方法,由于单线程抽取视频帧速度较慢,因此这里我们增加了多线程的方法. 1.抽取视频帧 抽取视频帧主要使用了 Opencv 模块. 其中: camera = cv2.Videocapture( ) ,函数主要是通过调用笔记本内置摄像头读取视频帧: res, image = camera.read( ) 函数主要是按帧读取视频,返回值 “res” 是布尔型,成功读取返回 T
-
利用Pandas求两个dataframe差集的过程详解
目录 1.交集 2.差集(df1-df2为例) 总结 1.交集 intersected=pd.merge(df1,df2,how='inner') 延伸(针对列求交集)intersected=pd.merge(df1,df2,on['name'],how='inner') 2.差集(df1-df2为例) diff=pd.concat([df1,df2,df2]).drop_duplicates(keep=False) 差集函数的详解: 1.Pandas 通过 concat() 函数能够轻松地将
-
pandas进行数据输入和输出的方法详解
目录 1.文本格式数据的读写 1.1 分块读入文本文件 1.2 将数据写入文本格式 总结 1.文本格式数据的读写 read_csv():从文件.URL或文件型对象读取分隔好的数据,逗号是默认分隔符 read_table():从文件.URL或文件型对象读取分隔好的数据,制表符('\t')是默认分隔符 Windows用户打印文件的原始内容 因为这个文件是逗号分隔的,我们可以使用read_csv将它读入一个DataFrame: 也可以用read_table,并指定分隔符 刚刚是文件包含表头行的情况,但
-
pandas 对日期类型数据的处理方法详解
pandas 的日期/时间类型有如下几种: Concept Scalar Class Array Class pandas Data Type Primary Creation Method Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_
-
C++提取文件名与提取XML文件的方法详解
目录 1.提取文件名 2.提取XML文件 总结 1.提取文件名 查找容器内子序列的最后一次出现的位置 std::find_end(str.begin(), str.end(), pattern.begin(), pattern.end()) 查找容器内子序列的第一次出现的位置 std::search() find函数主要实现的是在容器内查找指定的元素,并且这个元素必须是基本数据类型的.查找成功返回一个指向指定元素的迭代器,查找失败返回end迭代器. std::find() 返回两个迭代器之间的距
-
利用reverse索引优化like语句的方法详解
前言 在有一些情况下,开发同学经常使用like去实现一些业务需求,当使用like时,我们都知道使用like 前%(like '%111')这种情况是无法使用索引的,那么如何优化此类的SQL呢,下面是一个案例. 原SQL如下: pcc_cust_infonew 表索引如下 执行设计如下: 这里可以看到SQL执行3.96秒,执行计划中也可以发现PCC_CUST_INFONEW表走TABLE ACCESS FULL扫描,返回约380k的数据,然后再与PCC_CUST_CONTRACTCOMPANY表主
-
对DataFrame数据中的重复行,利用groupby累加合并的方法详解
pandas读取一组数据,可能存在重复索引,虽然可以利用drop_duplicate直接删除,但是会删除重要信息. 比如同一ID用户,多次登录学习时间.要计算该用户总共''学习时间'',就要把重复的ID的''学习时间''累加. 可以结合groupby和sum函数完成该操作. 实例如下: 新建一个DataFrame,计算每个 id 的总共学习时间.其中 id 为one/two的存在重复学习时间.先利用 groupby 按照键 id 分组,然后利用sum()函数求和,即可得到每个id的总共学习时间.
随机推荐
- 两个很详细的shell 实例代码
- AngularJs Understanding Angular Templates
- 批处理统计文件夹内的所有文件的数量和总大小的bat
- short int、long、float、double使用问题说明
- php下几个常用的去空、分组、调试数组函数
- Apache 配置详解(最好的APACHE配置教程)
- C#中var关键字用法分析
- 没有document.getElementByName方法
- 用asp实现无组件生成验证码的方法2种
- Lua性能优化技巧(五):削减、重用和回收
- 修改jquery里的dialog对话框插件为框架页(iframe) 的方法
- jquery实现简单的自动播放幻灯片效果
- JavaScript 克隆数组最简单的方法
- JavaScript 输入框内容格式验证代码
- Windows防火墙开启ping,禁ping的配置方法
- 升级空间的扣费计算办法
- 基于Apache的支持.NET2.0的Web服务器搭建
- C++内核对象封装单实例启动程序的类
- C#导出网站功能实例代码讲解
- php 无限级 SelectTree 类