python3.8动态人脸识别的实现示例

一、准备依赖库

pip install dlib
pip python-opencv

二、代码实现 

#coding: utf-8
"""
从视屏中识别人脸,并实时标出面部特征点
"""
import dlib           #人脸识别的库dlib

import cv2           #图像处理的库OpenCv

# 使用特征提取器get_frontal_face_detector
detector = dlib.get_frontal_face_detector()
# 读入视频文件
# cap = cv2.VideoCapture("row.MP4")
#建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
cap = cv2.VideoCapture(0)

# 设置视频参数,propId设置的视频参数,value设置的参数值
cap.set(3, 480)
# 截图screenshoot的计数器
cnt = 0
# cap.isOpened() 返回true/false 检查初始化是否成功
while(cap.isOpened()):

  # cap.read()
  # 返回两个值:
  #  一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  #  图像对象,图像的三维矩阵
  flag, im_rd = cap.read()

  # 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitKey(1)

  # 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

  # 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects
  faces = detector(img_gray, 0)

  # 待会要显示在屏幕上的字体
  font = cv2.FONT_HERSHEY_SIMPLEX

  # 如果检测到人脸
  if(len(faces)!=0):

    # 对每个人脸都画出框框
    for i in range(len(faces)):
      # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
      for k, d in enumerate(faces):
        # 用红色矩形框出人脸
        cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 255, 0),2)
        # 计算人脸热别框边长
        face_width = d.right() - d.left()
        #在上方显示文字
        cv2.putText(im_rd, str(face_width) , (d.left(), d.top()-20), font, 0.5, (255, 0, 0), 1)
    # 标出人脸数
    cv2.putText(im_rd, "Faces: "+str(len(faces)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
    # 没有检测到人脸
    cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

  # 添加说明
  im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)

  #检测按键
  k = cv2.waitKey(1)
  # 按下s键截图保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)
  # 按下q键退出
  if(k == ord('q')):
    break

  # 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
cap.release()
# 删除建立的窗口
cv2.destroyAllWindows()

三、实验结果

到此这篇关于python3.8动态人脸识别的实现示例的文章就介绍到这了,更多相关python3.8动态人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 学习Python3 Dlib19.7进行人脸面部识别

    0.引言 自己在下载dlib官网给的example代码时,一开始不知道怎么使用,在一番摸索之后弄明白怎么使用了: 现分享下 face_detector.py 和 face_landmark_detection.py 这两个py的使用方法: 1.简介 python: 3.6.3 dlib: 19.7 利用dlib的特征提取器,进行人脸 矩形框 的特征提取: dets = dlib.get_frontal_face_detector(img) 利用dlib的68点特征预测器,进行人脸 68点 特征提

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • python3+dlib实现人脸识别和情绪分析

    一.介绍 我想做的是基于人脸识别的表情(情绪)分析.看到网上也是有很多的开源库提供使用,为开发提供了很大的方便.我选择目前用的比较多的dlib库进行人脸识别与特征标定.使用python也缩短了开发周期. 官网对于dlib的介绍是:Dlib包含广泛的机器学习算法.所有的设计都是高度模块化的,快速执行,并且通过一个干净而现代的C ++ API,使用起来非常简单.它用于各种应用,包括机器人技术,嵌入式设备,手机和大型高性能计算环境. 虽然应用都比较高大上,但是自己在PC上做个情绪分析的小软件还是挺有意

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • Python3结合Dlib实现人脸识别和剪切

    0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 实现比较简单,代码量也比较少,适合入门或者兴趣学习. 图1 原图和处理后得到的图像窗口 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • Python opencv实现人眼/人脸识别以及实时打码处理

    利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克. 系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2 一.系统.资源准备 要想达成该目标,需要满足一下几个条件: 找一台带有摄像头的电脑,一般笔记本即可: 需配有Python3,并安装NumPy包.opencv: 需要有已经训练好的分类器,用于识别视频中的人脸.人眼等,如无分类器,可以点击这里下载:haarcascades分类器 二.动手做 1.导入相关包.设置视频格式.

  • python3.8动态人脸识别的实现示例

    一.准备依赖库 pip install dlib pip python-opencv 二.代码实现  #coding: utf-8 """ 从视屏中识别人脸,并实时标出面部特征点 """ import dlib #人脸识别的库dlib import cv2 #图像处理的库OpenCv # 使用特征提取器get_frontal_face_detector detector = dlib.get_frontal_face_detector() # 读

  • uniapp app 人脸识别的实现示例

    由于 小程序端 有camera组件 直接就可以调起摄像头 但是 app端是不支持这个标签的 所以只能用其他的方法 使用 nvue 中 live-pusher 组件 子组件 <template> <div> <div class="livefater"> <div style="width: 300px;height: 300px;border-radius: 150px;overflow: hidden;"> <

  • android实现人脸识别技术的示例代码

    1.前沿 人工智能时代快速来临,其中人脸识别是当前比较热门的技术,在国内也越来越多的运用,例如刷脸打卡,刷脸APP,身份识别,人脸门禁等.当前的人脸识别技术分为WEBAPI和SDK调用两种方式,WEBAPI需要实时联网,SDK调用可以离线使用. 本次使用的虹软提供的人脸识别的SDK,此SDK也可根据不同应用场景设计,针对性强.包括人脸检测.人脸跟踪.人脸识别,即使在离线环境下也可正常运行. 虹软公司是一家具有硅谷背景的图像处理公司,除了人脸技术以外,还有多项图像及视频处理技术.他们的双摄像头处理

  • Dlib+OpenCV深度学习人脸识别的方法示例

    前言 人脸识别在LWF(Labeled Faces in the Wild)数据集上人脸识别率现在已经99.7%以上,这个识别率确实非常高了,但是真实的环境中的准确率有多少呢?我没有这方面的数据,但是可以确信的是真实环境中的识别率并没有那么乐观.现在虽然有一些商业应用如员工人脸识别管理系统.海关身份验证系统.甚至是银行人脸识别功能,但是我们可以仔细想想员工人脸识别管理,海关身份证系统的应用场景对身份的验证功能其实并没有商家吹嘘的那么重要,打个比方说员工上班的时候刷脸如果失败了会怎样,是不是重新识

  • 微信小程序实现人脸识别登陆的示例代码

    前言 这是一篇关于一个原创微信小程序开发过程的原创文章.涉及到的核心技术是微信小程序开发方法和百度云人脸识别接口.小程序的主体是一个用于个人密码存储的密码管理器,在登陆注册阶段,需要调用百度云人脸识别接口以及百度云在线人脸库的管理接口.本文主要涉及登陆注册模块的实现,而且不需要PHP后台代码,完全在线调用接口实现,希望后来的你能有所收获! 步骤 步骤 涉及接口(百度云) 拍摄或者相册选择 并 上传比对样本照片到 人脸库 人脸库管理接口(main:人脸注册) 拍摄照片并上传,云服务器在线比对 人脸

  • Python3利用Dlib19.7实现摄像头人脸识别的方法

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac

  • Android人脸识别Demo竖屏YUV方向调整和图片保存(分享)

    本博客包含三个常用方法,用于盛开Android版人脸识别Demo中竖屏使用时送入yuv数据,但一直无法识别的情况. 1.首先可以尝试顺时针旋转90°或270°,然后送入识别SDK. 2.旋转方向后依然无法识别时,可以尝试saveImg( ),保存本地检查图片是否符合要求. /** * 视频顺时针旋转90 * 该方法仅仅在竖屏时候使用 * */ public static byte[] rotateYUV420Degree90(byte[] data, int imageWidth, int im

  • Python三十行代码实现简单人脸识别的示例代码

    一.库介绍 opencv,face_recognition,numpy,以及dlib 注意: 安装opencv速度可能过慢,需要更换国内镜像源,参考:https://www.jb51.net/article/208359.htm 附带Python3.7,64位版本 dlib whl下载路径:dlib-19_jb51.rar 二.库安装 pip install opencv-python pip install face_recognition pip install numpy dlib库需进入

随机推荐