R语言-如何读取前n行数据

通常我们读取文件时都会读取全部的文件然后再进行操作,但是当读取的数据量很大是读取的时间会很长,而且占用RAM,对于写测试代码有点不方便。

所以只读取前n行数据是一个挺不错的函数

##file:读取文件路径
##n:读取的前n行
##header:是否有标题行
readfile<-function(file, n=1000, header=T){
  pt <- file(file, "r")
  name <- NULL
  if(header){
    name <- strsplit(readLines(pt, 1), split=',')[[1]];  #读取标题
    f1 <- readLines(pt, n)
    data <- read.table(text=f1, sep=',', col.names=name)
  }else{
    data <- read.table(text=f1, sep=',')
  }
  close(pt)
  data
}

测试,最近制作linux启动盘误将移动硬盘当U盘,要死要死的,近500G资料丢失,因为制成启动盘所以资料还找不回来。

所以没有大型数据做测试。

之前200M的文件本人电脑上读取前10000行也是秒读的。

(data <- readfile(file="mtcars.csv", n=5, header=T))
       X..        X.mpg. X.cyl. X.disp. X.hp. X.drat.  X.wt.
1       Mazda RX4   21.0    6   160     110    3.90   2.620
2   Mazda RX4 Wag   21.0    6   160     110    3.90   2.875
3      Datsun 710   22.8    4   108      93    3.85   2.320
4  Hornet 4 Drive   21.4    6   258     110    3.08   3.215  

class(data)
[1] "data.frame"

补充:R语言(数据读写操作)

本节介绍一些实用的数据处理函数(如行、列合并),以及如何从各种数据源读、写数据。

实用函数

函数 含义
length() 对象的长度。如 2 行 3 列的矩阵,其长度为 6。
dim() 对象的维度。如 2 3 表示对象是二维的,有 2 行 3 列。
str() 对象的结构。常用于查看数据框各列的数据类型、或者因子的分级数量。
class() 对象的类。比如矩阵的返回结果是 matrix。
typeof() 对象内数据的类型。比如矩阵的返回结果是 integer。
mode() 对象的模式。比如矩阵会返回 numeric。
names() 对象中各成分的名称。
cbind() 按列合并多个对象。
rbind() 按行合并多个对象。
objectname 输出对象。
head() 输出对象的前部,对于数据框而言是前6行。通过 head(obj, N) 来指定输出前 N 行。
tail() 类似地,输出对象的后部。
ls(NULL) 无参数函数。显示当前所有对象的名称列表。
rm() 删除单个或多个对象。使用 rm(list = ls()) 可以删除除句点开头的隐藏对象外的所有对象。

一个 ls() 函数的例子:

a <- matrix(1:6, nrow=2, ncol=3)ls() # 目前的对象只有 a

‘a'

手动输入

使用需要赋值的 edit() 函数,或者无需写在赋值语句内的 fix() 函数。

dt <- data.frame(age = numeric(0), gender = character(0), weight = numeric(0))# dt <- edit(dt)  # 需要自赋值# fix(dt)  # 无需自赋值

遗憾的是,在 Jupyter Notebook 现行的版本中,尚且不支持 edit() 函数。不过用户可以使用 fix() 函数。

读取文件

关于怎样读取来自 URL 地址的网络文件,R 可以实现,但这里不做讨论。以下只讨论本地数据源的读写。

分隔符文件

利用 read.table() 函数即可。其常用的参数有:

read.table(file, [header=T/F, sep=" ", row.names=, col.names=, na.strings=,
       colClasses=, quote=, skip=, stringAsFactors=T/F,])

其中,可选参数的含义大多较好理解:

header 表示文件首行是否是列名而不是数据;

sep 是列间分隔符;na.strings 指定一个字符向量,内部所有的元素在读取时会被转换为 NA;

colClasses 用于指派各列的类型,如 =c(“numeric”, “character”, “NULL”) 指定了前两列的类型并跳过了第三列;

skip 用于跳过文件的最开始的若干行;

stringAsFactors 为 TRUE(默认值)时表示字符向量按因子处理,设为 FALSE 可以提升大文本处理速度。

data.path <- paste(getwd(), '/data/iris.data.csv', sep='')dt <- read.table(data.path, header=T, sep=",")head(dt)
X5.1 X3.5 X1.4 X0.2 Iris.setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5.0 3.6 1.4 0.2 Iris-setosa
5.4 3.9 1.7 0.4 Iris-setosa
4.6 3.4 1.4 0.3 Iris-setosa
# 利用 str() 函数查看其信息str(dt)
'data.frame':	149 obs. of  5 variables:
 $ X5.1       : num  4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 5.4 ...
 $ X3.5       : num  3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 ...
 $ X1.4       : num  1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 ...
 $ X0.2       : num  0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 ...
 $ Iris.setosa: Factor w/ 3 levels "Iris-setosa",..: 1 1 1 1 1 1 1 1 1 1 ...

须知:

如果列名中包含空格,R 会将空格替换为句点。

多数情况下,stringAsFactors 可以设为 FALSE。但是本例中的字符变量表示植物的种类,此处读成因子是正确的。

函数 read.csv() 能够读取 csv 文件,但是功能不如 read.table() —— 后者能处理非 csv 文本。

处理 Excel 文件

读取一个 Excel 文件最佳的方式,是预先将其转为 csv 格式,并用上述的 read.table() 方法读取。

你也可以查找关于 xlsx 包的相关内容,来获知如何直接操作 xlsx 文件。此处略过不提。

可以看一下以前写的文章:

统计软件数据:SAS/SPSS/Stata

需要用到 foreign 包。

SAS:使用 read.ssd()。如果你安装了 SAS,可以使用 Hmisc 包的 sas.get()。

SPSS:使用 read.spss(),或者 Hmisc 包的 spss.get()。

Stata:使用 read.data()。

数据库

一个方法是使用 ODBC 接口。针对你的数据库类型,安装 ODBC 驱动;然后在 R 中安装 RODBC 包。

另一个方法是使用 JDBC 接口,只不过需要 RJDBC 包。

写入文件

在我们对于数据进行清洗之后,往往需要把清洗结果输出到一个新文件中。这里就以 csv 格式为例吧。一个通常的 write.table()/write.csv() 的例子:

write.csv(dt, "filename.csv", row.names=F)

其中 row.names 指定为 FALSE,否则第一列会生成行号一样的数据。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • R语言-如何循环读取excel并保存为RData

    之前写过一个循环读取excel的代码,最近又有了新的需求:循环读取xlsx文件中的多个sheet,处理完之后循环输出到xlsx文件中的多个sheet中,总结一下. 1.循环读取csv文件并输出为RData格式 homedir <- "D:/Documents/tina/Database" #设置路径 setwd(homedir) temp = list.files(pattern="*.csv") for (i in 1:length(temp)) { fil

  • R语言读取excel数据的方法(两行命令)

    安装库 安装xlsx install.packages("xlsx") 使用 library(xlsx) ray = read.xlsx('D:/Code/R/Data in Excel/Chapter 8/gamma-ray.xls',1) 后面的参数,第一个放地址,第二个放具体sheet页(这里除了可以放数值之外,还可以放对应的名字(字符串)).除此之外,还可以使用encoding="utf-8"的方式来定义使用中文数据. 效果: > a = read.x

  • R语言数据读取以及数据保存方式

    一.R语言读取文本文件: 1.文件目录操作: getwd() : 返回当前工作目录 setwd("d:/data") 更改工作目录 2.常用的读取指令read read.table() : 读取文本文件 read.csv(): 读取csv文件 如果出现缺失值,read.table()会报错,read.csv()读取时会自动在缺失的位置填补NA 3.灵活的读取指令 scan() : 4.读取固定宽度格式的文件: read.fwf() 文本文档中最后一行的回车符很重要,这是一个类似于停止符

  • R语言 install.packages 无法读取索引的解决方案

    问题描述 在公司的Centos服务器上安装R的包,总是安装不成功,然后有如下提醒: Warning: 无法在貯藏處https://mirrors.ustc.edu.cn/CRAN/src/contrib中读写索引 Warning message: package 'DBI' is not available (for R version 3.2.2) 问题修复 [更好的方案请直接看最后边PS] 执行下边这条命令,随便选几个源. setRepositories(addURLs = c(CRANxt

  • R语言读取csv文件出错的解决方案

    今天在用R语言读取.csv文件的时候报错 Error in make.names(col.names, unique = TRUE) : invalid multibyte string 5 上网查了很久才知道原来是格式的问题(保存文件格式的编码不正确) 重新保存正确的格式就没有问题了~ 补充:R语言读取csv文件,第一列列名出现乱码的解决方法 在利用R语言读取csv文件时,第一列列名总是出现乱码,代码如下: setwd("E:\2.Model\4. Simulation") #设定文

  • R语言-如何读取前n行数据

    通常我们读取文件时都会读取全部的文件然后再进行操作,但是当读取的数据量很大是读取的时间会很长,而且占用RAM,对于写测试代码有点不方便. 所以只读取前n行数据是一个挺不错的函数 ##file:读取文件路径 ##n:读取的前n行 ##header:是否有标题行 readfile<-function(file, n=1000, header=T){ pt <- file(file, "r") name <- NULL if(header){ name <- strs

  • R语言之xlsx包读写Excel数据的操作

    感谢Adrian A. Drǎgulescu发布的xlsx包 xlsx包提供了必要的工具来与Excel 2007进行交互.用户可以阅读和编写xlsx,并可以通过设置数据格式.字体.颜色和边框来控制电子表格的外观.设置打印区域,缩放控制,创建分割和冻结面板,添加页眉和页脚.包使用Apache POI项目中的java库.本篇主要分享利用xlsx工具包在读写xlsx过程中所碰到的问题及解决办法. 工具准备 强烈建议大家使用RStudio这个IDE,它是以今为止对R语言最友好的一个IDE之一,而且使用很

  • R语言批量读取某路径下文件内容的方法

    R刚入门的时候,能够正确读取单个文件就觉得小有成就,随着时间的积累,单一文件地读取已经不能满足需求了,此时,批量地做就是解放双手地过程. 使用for循环把下载地TCGA数据读入R语言并转换成数据框 使用三个for循环来完成,这是第一个for循环. 1. 把所有数据读入在一个文件夹中 dir.create("data_in_one") #创建目标文件夹,也可右键创建 dir("rawdata/") #查看原路径的内容 for (dirname in dir("

  • python 读取文本文件的行数据,文件.splitlines()的方法

    一般跟踪训练的ground_truth的数据保存在文本文文件中,故每一行的数据为一张图片的标签数据,这个时候读取每一张图片的标签,具体实现如下: test_txt = '/home/zcm/tensorf/siamfc-tf-master/data/Biker/groundtruth.txt' def load_label_set(label_dir): label_folder = open(label_dir, "r") trainlines = label_folder.read

  • R语言入门教程之删除指定数据的方法

    引言 在R学习中经常用到的是按着某种逻辑值提取数据集.本文来讲一下利用索引的手法删除数据集合. 数据准备 > Data 英雄 职业 熟练等级 使用频次 胜率 1 后裔 射手 5 856 0.64 2 孙尚香 射手 5 211 0.10 3 狄仁杰 射手 5 324 0.20 4 李元芳 射手 4 75 0.30 5 安琪拉 法师 5 2324 0.40 6 张良 法师 4 755 0.50 7 不知火舞 法师 4 644 0.60 8 貂蝉 法师 3 982 0.70 9 <NA> &l

  • sql server删除前1000行数据的方法实例

    近日,sql数据库入门学习群有朋友问到,利用sql如何删除表格的前1000行数据,是否可以实现? 如果是oracle数据库管理软件,实现起来相对简单多了 delete from 表名 where rownum<=1000; 那sql server数据库管理软件呢? sql server里没有rownum功能,小编尝试用select top 先查询看下结果集,select * from 表名: delete from 表名 where 条码 in (select top 10 条码 from 表名

  • R语言使用cgdsr包获取TCGA数据示例详解

    目录 TCGA数据源 TCGA数据库探索工具 查看任意数据集的样本列表方式 选定数据形式及样本列表后获取感兴趣基因的信息,下载mRNA数据 选定样本列表获取临床信息 综合性获取 下载mRNA数据 获取病例列表的临床数据 从cBioPortal下载点突变信息 从cBioPortal下载拷贝数变异数据 把拷贝数及点突变信息结合画热图 TCGA数据源 众所周知,TCGA数据库是目前最综合全面的癌症病人相关组学数据库,包括的测序数据有: DNA Sequencing miRNA Sequencing P

  • oracle数据排序后获取前几行数据的写法(rownum、fetch方式)

    目录 0. 前言 1. 先说结论 2. 举个例子 1. 数据准备 2. 使用rownum方式获取前几行数据 3. 使用fetch方式获取前几行数据(推荐) 总结 0. 前言 无论在工作中,还是学习中,都会出现这样子的需求,对某张表进行了排序(按时间排序也好,其他字段排序也罢),然后获取前x行的数据,由于工作中经常出现,因此写篇文章记录一下多种写法. 1. 先说结论 第一种使用rownum方式,在oracle数据库中,查询出来的数据,可以通过rownum(行数)来指定具体第几行数据,但需要注意以下

  • R语言求一行(列表、list)数据的平均数操作

    R语言求一个列表的平均数可以使用mean() : mean英文意思有平均数的含义 x=c(1,3,5,7,9) max(x) #这样即可求得平均数为 : 5 假如读取过一个csv文件之后,要求其中一行数据中指定某个区间内的平均数可以使用rowMeans() data = read.csv("input.csv",sep=",",header=T) rowMeans(data[10:17]) 补充:R语言-数据框分组求平均值 [技术关键] 1.从excel把数据读到数

  • R语言 如何获取指定位置的数据

    R语言-获取指定位置的数据 R中采用数据对象+[ , ]的方式获取对应位置的数据,根据填入索引参数的不同类型可具体分为: 正整数.负整数.零.空格.逻辑值.名称 > matrix [,1] [,2] [,3] [,4] [,5] [1,] 1 5 9 13 17 [2,] 2 6 10 14 18 [3,] 3 7 11 15 19 [4,] 4 8 12 16 20 1.正整数索引 因为R中的起始位置为1,与一般的编程语言不同,所以这类索引最为常见. 需要注意的是,如果索引中存在重复值,R会继

随机推荐