Python深度学习TensorFlow神经网络基础概括

目录
  • 一、基础理论
    • 1、TensorFlow
    • 2、TensorFlow过程
      • 1、构建图阶段
      • 2、执行图阶段(会话)
  • 二、TensorFlow实例(执行加法)
    • 1、构造静态图
      • 1-1、创建数据(张量)
      • 1-2、创建操作(节点)
    • 2、会话(执行)
      • API:
      • 普通执行
      • fetches(多参数执行)
      • feed_dict(参数补充)
  • 总代码

一、基础理论

1、TensorFlow

tensor:张量(数据)

flow:流动

Tensor-Flow:数据流

2、TensorFlow过程

TensorFlow构成:图和会话

1、构建图阶段

构建阶段:定义了数据(张量tensor)与操作(节点operation),构成图(静态)

张量:TensorFlow中的基本数据对象。

节点:提供图中执行的操作。

2、执行图阶段(会话)

执行阶段:使用会话执行定义好的数据与操作。

二、TensorFlow实例(执行加法)

1、构造静态图

1-1、创建数据(张量)

#图(静态)
a = tf.constant(2)    #数据1(张量)
b = tf.constant(6)    #数据2(张量)

1-2、创建操作(节点)

c = a + b              #操作(节点)

2、会话(执行)

API:

普通执行

#会话(执行)
with tf.Session() as sess:
    print(sess.run(a + b))

fetches(多参数执行)

#会话(执行)
with tf.Session() as sess:
    print(sess.run([a,b,c]))

feed_dict(参数补充)

def Feed_Add():
    #创建静态图
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    c = tf.add(a,b)

    #会话(执行)
    with tf.Session() as sess:
        print(sess.run(c, feed_dict={a:0.5, b:2.0}))

总代码

import tensorflow as tf
def Add():
    #图(静态)
    a = tf.constant(2)    #数据1(张量)
    b = tf.constant(6)    #数据2(张量)
    c = a + b              #操作(节点)
    #会话(执行)
    with tf.Session() as sess:
        print(sess.run([a,b,c]))
def Feed_Add():
    #创建静态图
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    c = tf.add(a,b)
    #会话(执行)
    with tf.Session() as sess:
        print(sess.run(c, feed_dict={a:0.5, b:2.0}))
Add()
Feed_Add()

以上就是Python深度学习TensorFlow神经网络基础概括的详细内容,更多关于TensorFlow神经网络基础的资料请关注我们其它相关文章!

(0)

相关推荐

  • TensorFlow使用Graph的基本操作的实现

    1.创建图 在tensorflow中,一个程序默认是建立一个图的,除了系统自动建立图以外,我们还可以手动建立图,并做一些其他的操作. 下面我们使用tf.Graph函数建立图,使用tf.get_default_graph函数来获取图,使用reset_default_graph对图进行重置. import tensorflow as tf import numpy as np c = tf.constant(1.5) g = tf.Graph() with g.as_default(): c1 =

  • tensorflow入门之训练简单的神经网络方法

    这几天开始学tensorflow,先来做一下学习记录 一.神经网络解决问题步骤: 1.提取问题中实体的特征向量作为神经网络的输入.也就是说要对数据集进行特征工程,然后知道每个样本的特征维度,以此来定义输入神经元的个数. 2.定义神经网络的结构,并定义如何从神经网络的输入得到输出.也就是说定义输入层,隐藏层以及输出层. 3.通过训练数据来调整神经网络中的参数取值,这是训练神经网络的过程.一般来说要定义模型的损失函数,以及参数优化的方法,如交叉熵损失函数和梯度下降法调优等. 4.利用训练好的模型预测

  • 详解tensorflow实现迁移学习实例

    本文主要是总结利用tensorflow实现迁移学习的基本步骤. 所谓迁移学习,就是将上一个问题上训练好的模型通过简单的调整使其适用于一个新的问题.比如说,我们可以保留训练好的Inception-v3模型中所有的参数,只替换最后一层全连接层.在最后一层全连接层之前的网络称之为瓶颈层(bottleneck). 持久化 首先需要简单介绍下tensorflow中的持久化:在tensorflow中提供了一个非常简单的API来保存和还原一个神经网络模型,这个API就是tf.train.Saver类.当采用该

  • tensorflow基本操作小白快速构建线性回归和分类模型

    目录 tensorflow是非常强的工具,生态庞大 tensorflow提供了Keras的分支 Define tensor constants. Linear Regression 分类模型 本例使用MNIST手写数字 Model prediction: 7 Model prediction: 2 Model prediction: 1 Model prediction: 0 Model prediction: 4 TF 目前发布2.5 版本,之前阅读1.X官方文档,最近查看2.X的文档. te

  • Python深度学习TensorFlow神经网络基础概括

    目录 一.基础理论 1.TensorFlow 2.TensorFlow过程 1.构建图阶段 2.执行图阶段(会话) 二.TensorFlow实例(执行加法) 1.构造静态图 1-1.创建数据(张量) 1-2.创建操作(节点) 2.会话(执行) API: 普通执行 fetches(多参数执行) feed_dict(参数补充) 总代码 一.基础理论 1.TensorFlow tensor:张量(数据) flow:流动 Tensor-Flow:数据流 2.TensorFlow过程 TensorFlow

  • python深度学习tensorflow入门基础教程示例

    目录 正文 1.编辑器 2.常量 3.变量 4.占位符 5.图(graph) 例子1:hello world 例子2:加法和乘法 例子3: 矩阵乘法 正文 TensorFlow用张量这种数据结构来表示所有的数据. 用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器

  • python深度学习TensorFlow神经网络模型的保存和读取

    目录 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给出了保存TensorFlow模型的方法: import tensorflow as tf # 声明两个变量

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • Python深度学习pytorch神经网络图像卷积运算详解

    目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

  • Python深度学习pytorch神经网络多输入多输出通道

    目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

  • python深度学习tensorflow安装调试教程

    目录 正文 一.安装anaconda 二.安装tensorflow 三.调试 正文 用过一段时间的caffe后,对caffe有两点感受:1.速度确实快; 2. 太不灵活了. 深度学习技术一直在发展,但是caffe的更新跟不上进度,也许是维护团队的关系:CAFFE团队成员都是业余时间在维护和更新.导致的结果就是很多新的技术在caffe里用不了,比如RNN, LSTM,batch-norm等.当然这些现在也算是旧的东西了,也许caffe已经有了,我已经很久没有关注caffe的新版本了.它的不灵活之处

随机推荐