JAVA二叉树的几种遍历(递归,非递归)实现

首先二叉树是树形结构的一种特殊类型,它符合树形结构的所有特点。本篇博客会针对二叉树来介绍一些树的基本概念,二叉树的基本操作(存储,返回树的深度,节点个数,每一层的节点个数),二叉树的四种遍历(层次,先序,中序,后序)

一.基本概念

二叉树有5种基本形态:

注:二叉树有序树,就是说一个节点的左右节点是有大小之分的,我们通常设定为左孩子一定大于右孩子,下面的实现都是基于这个规则的。二叉树分为三种:满二叉树,完全二叉树,不完全二叉树

二叉树的四种遍历:层次,先序,中序,后序首先是非递归实现上图的满二叉树:1.先序:根左右,用栈来实现,下面是它的流程图和入栈出栈的状态图(n是每个节点的值) 输出:12,10,9,11,15,14,16


2.中序:左根右,用栈来实现,中序的堆栈状态和先序一样,只是输出的位置不同,先序在入栈前输出,中序在出栈后输出 输出:9,10,11,12,14,15,16

3.后序:左右根,采用了两个栈 输出:9,11,10,14,16,15,12

下面是实现的代码:

//创建一个节点类
 class Node {
  public int key;//节点的值
  public String Data;//节点存储的内容
  public Node leftNode;//左孩子
  public Node rightNode;//右孩子

  //节点类的构造方法
  public Node(int key,String Data){
    this.key=key;
    this.Data=Data;
    this.leftNode=null;
    this.rightNode=null;
  }

  //得到数据
  public int getKey(){
    return key;

}

}
public class BinaryTree {
  public Node root;
  public int h=0;

  //插入数据
  public void insert(int key,String Data){
    //实例化一个节点
    Node newNode=new Node(key, Data);
    //判断此二叉树是否有根节点
    if(root==null){
      root=newNode;

    }
    else
    {
      Node current=root;
      Node parent;
      while(true){
        parent=current;
        //判断大小,决定新节点是放在左边还是右边
        if(key<current.key){
          current=current.leftNode;//往左子树方向找
          if(current==null){
            parent.leftNode=newNode;//找到叶子节点
            return;
          }//叶子节点的If end;
        }//左子树的If end;
        else{
          current=current.rightNode;
          if(current==null){
            parent.rightNode=newNode;
            return;
          }//叶子
        }//右子树

      }
    }
  }//insert end;

//打印
  public void printlTree(Node node){
    System.out.print("*");

    System.out.print(node.getKey());

  }

  //深度
  public int Height(Node node){
    if(node==null){
      return 0;
    }
    else{
      int i=Height(node.leftNode);
      int j=Height(node.rightNode);
      return (i>j)?(i+1):(j+1);

    }
  }

  //节点个数
  public int NodeNum(Node node){
    if(node==null){
      return 0;
    }
    return NodeNum(node.leftNode)+NodeNum(node.rightNode)+1;

  }

  //第K层节点的个数
  public int getLeafNodeNum(Node node,int i){
    if(node==null){
      return 0;
    }
    else{
      if(i==0){
        return 1;
      }
      else{
        int numLeft=getLeafNodeNum(node.leftNode,i-1);
        int numRight=getLeafNodeNum(node.rightNode,i-1);
        return (numLeft+numRight);
      }
    }
    }

  //分层遍历
  public void LevelOrder(Node node){
    Queue<Node> queue=new LinkedList<Node>();
    if(node==null){
      return;
    }
    queue.add(node);
    while(!queue.isEmpty()){
      Node temp=queue.poll();
      System.out.print("*");
      System.out.print(temp.getKey());
      if(temp.leftNode!=null){
        queue.add(temp.leftNode);
      }
      if(temp.rightNode!=null){
        queue.add(temp.rightNode);
      }
    }
  }

  //递归前序遍历
  public void preOrder(Node node){
    if(node!=null){
    printlTree(node);
    preOrder(node.leftNode);
    preOrder(node.rightNode);
  }
  }
  //非递归前序遍历
  public void NpreOrder(Node node){

    Stack<Node> sk=new Stack<Node>();
    Node n=node;
    while(!sk.isEmpty()||n!=null){
      if(n!=null){
      System.out.print("<<<");
      System.out.print(n.getKey());

      sk.push(n);
      n=n.leftNode;
      }

      else{
      n=sk.pop();;
      n=n.rightNode;
    }
  }
  }

  //中序遍历
    public void inOrder(Node node){
      if(node!=null){
      preOrder(node.leftNode);
      printlTree(node);

      preOrder(node.rightNode);
    }
    }

    //非递归的中序遍历
    public void NinOrder(Node node){
      Stack<Node> s=new Stack<Node>();
      Node n=node;
      while(n!=null||!s.isEmpty()){
        if(n!=null){
          s.push(n);
          n=n.leftNode;
        }
        else{
          n=s.pop();
          System.out.println(n.getKey());
          n=n.rightNode;

        }
      }
    }

    //后序遍历
        public void postOrder(Node node){
          if(node!=null){
          preOrder(node.leftNode);

          preOrder(node.rightNode);
          printlTree(node);

        }
        }

        //非递归后序遍历
        public void NpostOrder(Node node){
          Stack<Node> s1=new Stack<Node>();//第一次入栈
          Stack<Node> s2=new Stack<Node>();//第二次入栈
          Node n=node;
        while(!s1.isEmpty()||n!=null){
          if(n!=null){
            s1.push(n);
            s2.push(n);
            n=n.rightNode;
          }
          else{
            n=s1.pop();
            n=n.leftNode;
          }
        }
        while(!s2.isEmpty()){
          System.out.println("((("+s2.pop().getKey());
        }

        }

public static void main(String[] args) {

    BinaryTree bt=new BinaryTree();
    bt.insert(12, "A");
    bt.insert(10, "B");
    bt.insert(15, "C");
    bt.insert(9, "D");
    bt.insert(11, "E");
    bt.insert(14, "F");
    bt.insert(16, "G");

   System.out.println("这个二叉树的深度:"+bt.Height(bt.root));
    System.out.println("这个二叉树的节点个数:"+bt.NodeNum(bt.root));

    System.out.println("前序遍历:");
    bt.preOrder(bt.root);
    System.out.println();

    System.out.println("非递归前序遍历:");
    bt.NpreOrder(bt.root);
    System.out.println();

    System.out.println("中序遍历:");
    bt.inOrder(bt.root);
    System.out.println();

    System.out.println("非递归中序遍历:");
    bt.NinOrder(bt.root);
    System.out.println();

    System.out.println("后序遍历:");
    bt.postOrder(bt.root);
    System.out.println();

    System.out.println("非递归后序遍历:");
    bt.NpostOrder(bt.root);
    System.out.println();

    System.out.println("分层遍历:");
    bt.LevelOrder(bt.root);
    System.out.println();

    System.out.println("第二层有"+bt.getLeafNodeNum(bt.root, 2));

  }
    }

代码亲测可以运行(^-^)V

这些只是二叉树的一部分内容,希望可以帮助一些初学数据结构的亲,如果有错误的地方可以帮忙提出来的哦!!

(0)

相关推荐

  • java二叉树的非递归遍历

    二叉树的递归遍历比较简单,这里就不聊了.今天主要聊聊二叉树的非递归遍历,主要借助于"栈"后进先出的特性来保存节点的顺序,先序遍历和中序遍历相对来说比较简单,重点理解后序遍历. 1. 先看看节点类型: //二叉树的节点类型 private class Node{ int data; //节点值 Node leftChild; //左孩子 Node rightChild; //右孩子 public Node(int data) { this.data=data; } } 2.先序遍历. 非

  • Java二叉树的遍历思想及核心代码实现

    二叉树在计算机中的存储方式往往线性结构,线性存储分为顺序存储和链式存储,将二叉树按层序编号. 顺序结构:按编号的顺序进行存储,对于完全二叉树而言,顺序存储可以反映二叉树的逻辑,但是对于大多数的二叉树则无法反映其逻辑关系,不过可以用 ^ 来代替不存在的结点,但是如果这个树是一个右斜树,就非常浪费存储空间.所以二叉树的存储形式一般为链式存储结构. 链式存储:每一个结点都分有一个数据域(data)和两个指针域(lchild和rchild),指针域分别指向左孩子和右孩子,若为空则为null.遍历方式有四

  • Java二叉树的四种遍历(递归和非递归)

    二叉树的遍历可以分为前序.中序.后序.层次遍历. 前中后是指何时访问中间节点,即前序遍历,遍历节点的顺序为:中->左->右: 中序遍历,遍历节点的顺序为:左->中->右: 后序遍历,遍历节点的顺序为:左->右->中. 前序遍历 递归实现 public void preorder_Traversal(TreeNode root) { if(root==null)return; //访问节点的逻辑代码块 System.out.print(root.val+" &q

  • Java二叉树路径和代码示例

    给定一个二叉树,找出所有路径中各节点相加总和等于给定 目标值 的路径. 一个有效的路径,指的是从根节点到叶节点的路径. 样例 给定一个二叉树,和 目标值 = 5: 1 / \ 2 4 / \ 2 3 返回: [ [1, 2, 2], [1, 4] ] 代码如下: /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public Tree

  • java二叉树的几种遍历递归与非递归实现代码

    前序(先序)遍历 中序遍历 后续遍历 层序遍历 如图二叉树: 二叉树结点结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x){ val=x; } @Override public String toString(){ return "val: "+val; } } 访问函数 public void visit(TreeNode node){ System.out.print(

  • Java二叉树的四种遍历(递归与非递归)

    目录 一.先序遍历与后序遍历 二.中序遍历 三.层序遍历 一.先序遍历与后序遍历 先序遍历根节点,再遍历左子树,再遍历右子树. 后序遍历先遍历左子树,再遍历右子树,再遍历根节点. 先序遍历递归实现: public static void preOrderByRecursion(TreeNode root) { // 打印节点值 System.out.println(root.value); preOrder(root.left); preOrder(root.right); } 先序遍历的非递归

  • JAVA二叉树的几种遍历(递归,非递归)实现

    首先二叉树是树形结构的一种特殊类型,它符合树形结构的所有特点.本篇博客会针对二叉树来介绍一些树的基本概念,二叉树的基本操作(存储,返回树的深度,节点个数,每一层的节点个数),二叉树的四种遍历(层次,先序,中序,后序) 一.基本概念 二叉树有5种基本形态: 注:二叉树有序树,就是说一个节点的左右节点是有大小之分的,我们通常设定为左孩子一定大于右孩子,下面的实现都是基于这个规则的.二叉树分为三种:满二叉树,完全二叉树,不完全二叉树 二叉树的四种遍历:层次,先序,中序,后序首先是非递归实现上图的满二叉

  • Java二叉树的四种遍历方式详解

    二叉树的四种遍历方式: 二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使得每个结点被访问依次且仅被访问一次. 四种遍历方式分别为:先序遍历.中序遍历.后序遍历.层序遍历. 遍历之前,我们首先介绍一下,如何创建一个二叉树,在这里用的是先建左树在建右树的方法, 首先要声明结点TreeNode类,代码如下: public class TreeNode { public int data; public TreeNode leftC

  • Java实现的二叉树常用操作【前序建树,前中后递归非递归遍历及层序遍历】

    本文实例讲述了Java实现的二叉树常用操作.分享给大家供大家参考,具体如下: import java.util.ArrayDeque; import java.util.Queue; import java.util.Stack; //二叉树的建树,前中后 递归非递归遍历 层序遍历 //Node节点 class Node { int element; Node left; Node right; public Node() { } public Node(int element) { this.

  • C语言二叉树常见操作详解【前序,中序,后序,层次遍历及非递归查找,统计个数,比较,求深度】

    本文实例讲述了C语言二叉树常见操作.分享给大家供大家参考,具体如下: 一.基本概念 每个结点最多有两棵子树,左子树和右子树,次序不可以颠倒. 性质: 1.非空二叉树的第n层上至多有2^(n-1)个元素. 2.深度为h的二叉树至多有2^h-1个结点. 满二叉树:所有终端都在同一层次,且非终端结点的度数为2. 在满二叉树中若其深度为h,则其所包含的结点数必为2^h-1. 完全二叉树:除了最大的层次即成为一颗满二叉树且层次最大那层所有的结点均向左靠齐,即集中在左面的位置上,不能有空位置. 对于完全二叉

  • C语言二叉树的三种遍历方式的实现及原理

    二叉树遍历分为三种:前序.中序.后序,其中序遍历最为重要.为啥叫这个名字?是根据根节点的顺序命名的. 比如上图正常的一个满节点,A:根节点.B:左节点.C:右节点,前序顺序是ABC(根节点排最先,然后同级先左后右):中序顺序是BAC(先左后根最后右):后序顺序是BCA(先左后右最后根). 比如上图二叉树遍历结果 前序遍历:ABCDEFGHK 中序遍历:BDCAEHGKF 后序遍历:DCBHKGFEA 分析中序遍历如下图,中序比较重要(java很多树排序是基于中序,后面讲解分析) 下面介绍一下,二

  • 详解Java 二叉树的实现和遍历

    目录 什么是二叉树 二叉树建树 前序建树 中序建树 后序建树 二叉树的遍历 什么是二叉树 简单理解为对于一个节点来说,最多拥有一个上级节点,同时最多具备左右两个下级节点的数据结构. 由于很多排序算法都是基于二叉树实现的,多叉树也是二叉树延伸过去的,所以二叉树的建树和遍历就显得非常重要. 二叉树建树 一般情况是给你一个串,要求让你以前序,中序,后序的方式建树.那么此时我们就需要首先了解三个概念: 前序遍历 中序遍历 后序遍历 我们来看看一棵二叉树的结构: 0 1 2 3 4 5 6 0就是整个二叉

  • 详解Java 二叉树的实现和遍历

    目录 什么是二叉树 二叉树建树 前序建树 中序建树 后序建树 二叉树的遍历 什么是二叉树 简单理解为对于一个节点来说,最多拥有一个上级节点,同时最多具备左右两个下级节点的数据结构. 由于很多排序算法都是基于二叉树实现的,多叉树也是二叉树延伸过去的,所以二叉树的建树和遍历就显得非常重要. 二叉树建树 一般情况是给你一个串,要求让你以前序,中序,后序的方式建树.那么此时我们就需要首先了解三个概念: 前序遍历 中序遍历 后序遍历 我们来看看一棵二叉树的结构: 0 1 2 3 4 5 6 0就是整个二叉

随机推荐