使用python svm实现直接可用的手写数字识别

目录
  • python svm实现手写数字识别——直接可用
    • 1、训练
      • 1.1、训练数据集下载——已转化成csv文件
      • 1.2 、训练源码
    • 2、预测单张图片
      • 2.1、待预测图像
      • 2.2、预测源码
      • 2.3、预测结果

python svm实现手写数字识别——直接可用

最近在做个围棋识别的项目,需要识别下面的数字,如下图:

我发现现在网上很多代码是良莠不齐,…真是一言难尽,于是记录一下,能够运行成功并识别成功的一个源码。

1、训练

1.1、训练数据集下载——已转化成csv文件

下载地址

1.2 、训练源码

train.py

import pandas as pd
from sklearn.decomposition import PCA
from sklearn import svm
from sklearn.externals import joblib
import time

if __name__ =="__main__":
    train_num = 5000
    test_num = 7000
    data = pd.read_csv('train.csv')
    train_data = data.values[0:train_num,1:]
    train_label = data.values[0:train_num,0]
    test_data = data.values[train_num:test_num,1:]
    test_label = data.values[train_num:test_num,0]
    t = time.time()

    #PCA降维
    pca = PCA(n_components=0.8, whiten=True)
    print('start pca...')
    train_x = pca.fit_transform(train_data)
    test_x = pca.transform(test_data)
    print(train_x.shape)

    # svm训练
    print('start svc...')
    svc = svm.SVC(kernel = 'rbf', C = 10)
    svc.fit(train_x,train_label)
    pre = svc.predict(test_x)

    #保存模型
    joblib.dump(svc, 'model.m')
    joblib.dump(pca, 'pca.m')

    # 计算准确率
    score = svc.score(test_x, test_label)
    print(u'准确率:%f,花费时间:%.2fs' % (score, time.time() - t))

2、预测单张图片

2.1、待预测图像

2.2、预测源码

from sklearn.externals import joblib
import cv2

if __name__ =="__main__":

    img = cv2.imread("img_temp.jpg", 0)
    #test = img.reshape(1,1444)![在这里插入图片描述](https://img-blog.csdnimg.cn/20210630133136668.jpg#pic_center)

    Tp_x = 10
    Tp_y = 10
    Tp_width = 20
    Tp_height = 20
    img_temp = img[Tp_y:Tp_y + Tp_height, Tp_x:Tp_x + Tp_width]  # 参数含义分别是:y、y+h、x、x+w
    cv2.namedWindow("src", 0)
    cv2.imshow("src", img_temp)
    cv2.waitKey(1000)
    [height, width] = img_temp.shape
    print(width, height)

    res_img = cv2.resize(img_temp, (28, 28))
    test = res_img.reshape(1, 784)
    #加载模型
    svc = joblib.load("model.m")
    pca = joblib.load("pca.m")
    # svm
    print('start pca...')
    test_x = pca.transform(test)
    print(test_x.shape)
    pre = svc.predict(test_x)
    print(pre[0])

2.3、预测结果

到此这篇关于使用python svm实现直接可用的手写数字识别的文章就介绍到这了,更多相关python svm 手写数字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python tensorflow基于cnn实现手写数字识别

    一份基于cnn的手写数字自识别的代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 加载数据集 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # 以交互式方式启动session # 如果不使用交互式session,则在启动s

  • python实现基于SVM手写数字识别功能

    本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下 1.SVM手写数字识别 识别步骤: (1)样本图像的准备. (2)图像尺寸标准化:将图像大小都标准化为8*8大小. (3)读取未知样本图像,提取图像特征,生成图像特征组. (4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出. 识别代码: #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...'

  • python神经网络编程实现手写数字识别

    本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下 import numpy import scipy.special #import matplotlib.pyplot class neuralNetwork: def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes

  • 机器学习python实战之手写数字识别

    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

  • 使用python svm实现直接可用的手写数字识别

    目录 python svm实现手写数字识别--直接可用 1.训练 1.1.训练数据集下载--已转化成csv文件 1.2 .训练源码 2.预测单张图片 2.1.待预测图像 2.2.预测源码 2.3.预测结果 python svm实现手写数字识别--直接可用 最近在做个围棋识别的项目,需要识别下面的数字,如下图: 我发现现在网上很多代码是良莠不齐,-真是一言难尽,于是记录一下,能够运行成功并识别成功的一个源码. 1.训练 1.1.训练数据集下载--已转化成csv文件 下载地址 1.2 .训练源码 t

  • Python实战小项目之Mnist手写数字识别

    目录 程序流程分析图: 传播过程: 代码展示: 创建环境 准备数据集 下载数据集 下载测试集 绘制图像 搭建神经网络 训练模型 测试模型 保存训练模型 运行结果展示: 程序流程分析图: 传播过程: 代码展示: 创建环境 使用<pip install+包名>来下载torch,torchvision包 准备数据集 设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8 BATCH_SIZE = 512 EPOCHS = 8 device = torch.devi

  • Python实现带GUI界面的手写数字识别

    目录 1.效果图 2.数据集 3.关于模型 4.关于GUI设计 5.缺点 6.遗留问题 1.效果图 有点low,轻喷 点击选择图片会优先从当前目录查找 2.数据集 这部分我是对MNIST数据集进行处理保存 对应代码: import tensorflow as tf import matplotlib.pyplot as plt import cv2 from PIL import Image import numpy as np from scipy import misc (x_train_a

  • Python(TensorFlow框架)实现手写数字识别系统的方法

    手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统.这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题.本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述. 项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统. 设计识别率高的算法,实现快速识别的系统. 1 LeNet-5模型的介绍 本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

    本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能.分享给大家供大家参考,具体如下: import gluonbook as gb from mxnet import autograd,nd,init,gluon from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils import mxnet as mx net = nn.Sequential() with net.nam

  • Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

    本文实例讲述了Python tensorflow实现mnist手写数字识别.分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data_path = 'F:\CNN\data\mnist' mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline da

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

随机推荐