python实现sqlalchemy的使用概述

目录
  • 使用概述
    • 一、创建引擎和会话
    • 二、定义类来表示虚拟表格
    • 三、增删改查
    • 四、进阶技能

sqlAlchemy解读: https://www.jb51.net/article/174565.htm

sqlAlchemy解读:https://www.jb51.net/article/173950.htm

特点是操纵Python对象而不是SQL查询,也就是在代码层面考虑的是对象,而不是SQL,体现的是一种程序化思维,这样使得Python程序更加简洁易懂。

具体的实现方式是将数据库表转换为Python类,其中数据列作为属性,数据库操作作为方法。

  1. abstract # 辅助sqlAlchemy实现类的继承,自动继承属性,省去super()
  2. SQLAlchemy定义的ORM,在继承父级ORM时候,Foreign Key外键是不能继承的,它强制要求在子类中重新定义。

使用概述

在使用sqlalchemy访问数据库的时候,以类的形式表示表格,因此在使用之前,需要先定义类。

类的定义有三种:基类BASE、父类、子类

基类是sqlalchemy底层的;当需要一份数据切分为多个子表的时候,或多个表的字段一致时,可以使用一个父类定义字段的类型,多个子表继承父类的属性。

一、创建引擎和会话

通过创建引擎、绑定引擎来创建会话,实现数据库的访问。

from sqlalchemy import create_engine                          # 引擎
from sqlalchemy.orm import sessionmaker                       # 创建orm的会话池,orm和sql均可以管理对象关系型数据库,需要绑定引擎才可以使用会话,

# 创建连接
engine = create_engine("mysql+pymysql://root:1234;@127.0.0.1/test", # 需要安装mysql和pymysql的模块,用户名:密码@ip地址/某个数据库
                       #echo=True,         # 打印操作对应的SQL语句
                       pool_size=8,       # 连接个数
                       pool_recycle=60*30 # 不使用时断开
                       )

# 创建session
DbSession = sessionmaker(bind=engine)  # 会话工厂,与引擎绑定。
session = DbSession()                  # 实例化

session.close()  # 关闭会话

二、定义类来表示虚拟表格

在使用sqlalchemy访问数据库的时候,以类的形式表示表格,因此在使用之前,需要先定义类。使用类的名称而不是tablename实现之后的增删改查。

# 导入定义类需要的模块
from sqlalchemy.ext.declarative import declarative_base       # 调用sqlalchemy的基类
from sqlalchemy import Column, Index, distinct, update        # 指定字段属性,索引、唯一、DML
from sqlalchemy.types import *                                # 所有字段类型

1. 直接建立一个可调用的表格

需要先继承基类,在定义__init__函数,设置输入参数。

# 创建库表类型
Base = declarative_base()  # 调用sqlalchemy的基类

class Users(Base):
    '''继承基类'''
    __tablename__ = "users"                     # 数据表的名字
    __table_args__ = {'extend_existing': True}  # 当数据库中已经有该表时,或内存中已声明该表,可以用此语句重新覆盖声明。
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True)
    #email = Column(String(64))

    def __init__(self, name, email):
        self.name = name
        self.email = email                      # 声明需要调用的特征,可以只声明数据库中表格列的子集

Base.metadata.create_all(engine)                # 表生效:将所有定义的类,使用引擎创建,此时可以在数据库中看到这些表。

2. 创建多个相同列属性的表格 先建立一个表格的父类,指定列的属性,再通过继承父类

不同的表

# 创建库表类型
Base = declarative_base()  # 调用sqlalchemy的基类

class model_data(BASE):
    '''创建数据库表类:模型所需的基本字段'''
    __abstract__ = True                         # 辅助sqlAlchemy实现类的继承,自动继承属性,省去super()
    __table_args__ = {'extend_existing': True}  # 若表的声明在内存中已存在,则重新声明表的名称,不然会报错
    ai_xdr_id = Column(BigInteger(), primary_key=True, unique=True, autoincrement= True)
    ai_sdk_id = Column(BigInteger())

class TrainData(model_data): # 训练集表
    '''继承model_data的属性,并将表的名字定义为:'xxx_train_data'存入数据库 '''
    __tablename__ = 'xxx_train_data'

class DevData(model_data):   # 开发集表
    '''表的名字定义为:'xxx_dev_data' '''
    __tablename__ = 'xxx_dev_data'

class TestData(model_data):  # 测试集表
    __tablename__ = 'xxx_test_data'

Base.metadata.create_all(engine)                # 表生效:将所有定义的类,使用引擎创建,此时可以在数据库中看到这些表。

三、增删改查

因为是会话操作,当某个语句,例如增加数据时,不成功的时候需要回滚。

增加数据

# 增加数据
add_user = Users("test3", "test123@qq.com")
session.add(add_user)
session.commit()

# add_users = Users(("test", "test123@qq.com"),('a','b')))
# session.add(add_users)
# session.commit()

# 当上述语句出现执行错误时,需要执行回滚语句,才能继续操作
session.rollback()

删除数据

delete_users = session.query(Users).filter(Users.name == "test").first()
if delete_users:
    session.delete(delete_users)
    session.commit()

session.query(Users).filter(Users.name == "test").delete()
session.commit()

更改数据

# 改
session.query(Users).filter_by(id=1).update({'name': "Jack"})

users = session.query(Users).filter_by(name="Jack").first()
users.name = "test"

查找数据

users = session.query(Users).filter_by(id=5).all()
for item in users:
    print(item.name)
    print(item.email)   # 若未在类中声明,则无法访问数据库中该表的属性。

四、进阶技能

1. 将DataFrame格式的数据导入数据库

class DataAccessLayer:# 数据连接层、定义了连接和关闭。
    '''数据连接层、定义了连接和关闭。'''
    def __init__(self):
        self.ENGINE = None                 # 引擎
        self.SESSION = None                # 会话
        self.conn_string = "mysql+pymysql://root:1234;@127.0.0.1/test"  ## 需要安装mysql和pymysql的模块,用户名:密码@ip地址/某个数据库

    def connect(self):
        '''连接时建立引擎和会话。'''
        self.ENGINE = create_engine(self.conn_string, encoding='utf-8',isolation_level="AUTOCOMMIT", connect_args={'connect_timeout': 7200})
        # self.ENGINE = create_engine(self.conn_string, encoding='utf-8',connect_args={'connect_timeout': 7200})
        self.SESSION = sessionmaker(bind=self.ENGINE)()

    def disconnect(self):
        '''断开时,关闭引擎。'''
        self.ENGINE.close()

def df_save_db(df,tablename):
    '''将数据集DataFrame保存到数据库'''
    db_ac = DataAccessLayer()
    db_ac.connect()
    conn = db_ac.ENGINE.connect()
    df.to_sql(name=tablename, con=conn, if_exists='append', index=False)
    conn.close()
    print('%s updated.'%tablename)

df = pd.read_csv('traindata_jiangsu_donghai.csv')
df_save_db(df,'traindata_jiangsu_donghai')

到此这篇关于python实现sqlalchemy的使用的文章就介绍到这了,更多相关python sqlalchemy使用内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python SQLAlchemy入门教程(基本用法)

    本文将以Mysql举例,介绍sqlalchemy的基本用法.其中,Python版本为2.7,sqlalchemy版本为1.1.6. 一. 介绍 SQLAlchemy是Python中最有名的ORM工具. 关于ORM: 全称Object Relational Mapping(对象关系映射). 特点是操纵Python对象而不是SQL查询,也就是在代码层面考虑的是对象,而不是SQL,体现的是一种程序化思维,这样使得Python程序更加简洁易读. 具体的实现方式是将数据库表转换为Python类,其中数据列

  • python数据库操作mysql:pymysql、sqlalchemy常见用法详解

    本文实例讲述了python数据库操作mysql:pymysql.sqlalchemy常见用法.分享给大家供大家参考,具体如下: 相关内容: 使用pymysql直接操作mysql 创建表 查看表 修改表 删除表 插入数据 查看数据 修改数据 删除数据 使用sqlmary操作mysql 创建表 查看表 修改表 删除表 插入数据 查看数据 修改数据 删除数据 首发时间:2018-02-24 23:59 修改: 2018-06-15,发现自己关于pymysql写了对于数据的操作示例,但没有写表结构的示例

  • python SQLAlchemy的Mapping与Declarative详解

    前面介绍过vSQLAlchemy中的 Engine 和 Connection,这两个对象用在row SQL (原生的sql语句)上操作,而 ORM(Object Relational Mapper)则是一种用面向对象的思维来操作表数据的技术.所谓ORM 就是Python 对象到数据表的一种映射关系. 以前 SQLAlchemy 是怎么把Python对象和数据库中表里面的每条记录进行映射的呢?通过一个mapping函数 先来看个例子: from sqlalchemy import Table, M

  • Python使用sqlalchemy模块连接数据库操作示例

    本文实例讲述了Python使用sqlalchemy模块连接数据库操作.分享给大家供大家参考,具体如下: 安装: pip install sqlalchemy # 安装数据库驱动: pip install pymysql pip install cx_oracle 举例:(在url后面加入?charset=utf8可以防止乱码) from sqlalchemy import create_engine engine=create_engine('mysql+pymysql://username:p

  • Python流行ORM框架sqlalchemy安装与使用教程

    本文实例讲述了Python流行ORM框架sqlalchemy安装与使用.分享给大家供大家参考,具体如下: 安装 http://docs.sqlalchemy.org 1.安装 #进入虚拟环境 #执行 ./python3 -m pip install import sqlalchemy print(sqlalchemy.__version__) # 1.1.15 我这里使用的版本是1.1.15 创建连接对象 http://docs.sqlalchemy.org/en/latest/orm/tuto

  • python使用SQLAlchemy操作MySQL

    SQLAlchemy是Python编程语言下的一款开源软件,提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行.SQLAlchemy首次发行于2006年2月,并迅速地在Python社区中最广泛使用的ORM工具之一,不亚于Django的ORM框架. 本文将介绍如何使用SQLAlchemy操作MySQL,完成基础的表创建,表格数据的新增.查询.修改.删除(CRUD)等操作. 首先我们需要确认当前的Python环境下已经安装sqlalchemy和pymysql模块. 新建表格 我们使

  • python SQLAlchemy 中的Engine详解

    先看这张图,这是从官方网站扒下来的. Engine 翻译过来就是引擎的意思,汽车通过引擎来驱动,而 SQLAlchemy 是通过 Engine 来驱动,Engine 维护了一个连接池(Pool)对象和方言(Dialect).方言简单而言就是你连的到底是 MySQL 还是 Oracle 或者 PostgreSQL 还是其它数据库,关于方言(Dialect)的介绍在另外一篇文章有介绍,可参考数据库方言dialect. 连接池很重要,因为每次发送sql查询的时候都需要先建立连接,如果程序启动的时候事先

  • python实现sqlalchemy的使用概述

    目录 使用概述 一.创建引擎和会话 二.定义类来表示虚拟表格 三.增删改查 四.进阶技能 sqlAlchemy解读: https://www.jb51.net/article/174565.htm sqlAlchemy解读:https://www.jb51.net/article/173950.htm 特点是操纵Python对象而不是SQL查询,也就是在代码层面考虑的是对象,而不是SQL,体现的是一种程序化思维,这样使得Python程序更加简洁易懂. 具体的实现方式是将数据库表转换为Python

  • python之sqlalchemy创建表的实例详解

    python之sqlalchemy创建表的实例详解 通过sqlalchemy创建表需要三要素:引擎,基类,元素 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column,Integer,String 引擎:也就是实体数据库连接 engine = create_engine('mysql+pymysql://go

  • Python flask sqlalchemy的简单使用及常用操作

    目录 前言 flask sqlalchemy的配置使用 sqlalchemy的增删改查 查询数据 增加数据 修改数据 删除数据 总结 前言 说到面向对象,大家都不陌生.关系型数据库也是后端日常用来存储数据的,但数据库是关系型的,因此,ORM通过对象模型和数据库的关系模型之间建立映射,我们就能像操作对象一样来操作数据库. ORM的优点主要是面向对象编程,不需写原生SQL,用操作对象的方式访问数据.当然,缺点就是当遇到复杂的操作时,ORM就不那么好写了,还有就是加了一层映射,执行效率低于原生sql.

  • python flask sqlalchemy连接数据库流程介绍

    1.安装flask_sqlalchemy和pymysql包 pip install flask-sqlalchemy pip install pymysql 2.进行配置 使用Flask-SQLAlchemy扩展操作数据库,首先需要通过URL建立数据库连接,必须保存到Flask配置对象的SQLALCHEMY_DATABASE_URI中. HOSTNAME = '127.0.0.1'PORT     = '3306'DATABASE = 'flask_test'USERNAME = 'root'P

  • Python的SQLAlchemy框架使用入门

    数据库表是一个二维表,包含多行多列.把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含id和name的user表: [ ('1', 'Michael'), ('2', 'Bob'), ('3', 'Adam') ] Python的DB-API返回的数据结构就是像上面这样表示的. 但是用tuple表示一行很难看出表的结构.如果把一个tuple用class实例来表示,就可以更容易地看出表的结构来: class U

  • 浅析python中SQLAlchemy排序的一个坑

    前言 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果.最近在使用SQLAlchemy排序遇到了一个坑,所以想着总结下来,分享给更多的朋友,下面来一起看看吧. 坑的代码 query = db_session.query(UserVideo.vid, UserVideo.uid, UserVideo.v_width, UserVideo.v_heig

  • Python的SQLalchemy模块连接与操作MySQL的基础示例

    一.SQLalchemy简介 SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器.SQLAlchemy提供了"一个熟知的企业级全套持久性模式,使用ORM等独立SQLAlchemy的一个优势在于其允许开发人员首先考虑数据模型,并能决定稍后可视化数据的方式. 二.SQLAlchempy的安装 首先需安装mysql,这里就不再多说了..... 然后,下载SQLAlchemy(http://www.sqlalchemy.org/download.h

  • 分析解决Python中sqlalchemy数据库连接池QueuePool异常

    目录 数据库相关错误的解决办法 错误一:数据库连接池超过限制 错误二:数据库事务未回滚 数据库相关错误的解决办法 错误一:数据库连接池超过限制 SqlAlchemy QueuePool limit overflow 造成连接数超过数据库连接池的限制,有两方面的原因,第一个是由于数据库连接池数比较小,因此当连接数稍微增加的时候就会超过限制,另一个原因就是在使用完数据库连接后未能即使释放,最后造成数据连接数持续增加从而超出数据库连接池的限制,所以我们也可以从这两个方面来解决这个问题,但是根本上还是得

随机推荐