如何用python绘制雷达图

目录
  • 一、比较汽车性能
  • 二、比较不同城市近期天气状况

雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法,雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点。

下面以实际例子给大家讲解一下雷达图的应用场景和绘制方法:

一、比较汽车性能

这类雷达图一般用于比较同类事物不同纬度性能的优劣,以奥迪A4L时尚动感型和凯迪拉克CT4精英型为例,我们来画一下这两种汽车的雷达图,代码如下:

import pyecharts.options as opts
from pyecharts.charts import Radar
v1 = [[110, 9.7, 6.2, 56, 150, 1610]]
v2 = [[174, 6.9, 6.8, 66, 237, 1540]]
c=(
    Radar(init_opts=opts.InitOpts(bg_color="#3CB371"))   #设置背景颜色
    .add_schema(
        schema=[
            opts.RadarIndicatorItem(name="最大功率率(KW)", max_=200),
            opts.RadarIndicatorItem(name="百米提速(秒)", max_=12),
            opts.RadarIndicatorItem(name="综合油耗(L/100KM)", max_=20),
            opts.RadarIndicatorItem(name="油箱容积(L)", max_=100),
            opts.RadarIndicatorItem(name="马力(Ps)", max_=300),
            opts.RadarIndicatorItem(name="整车质量KG()", max_=2000),
        ],
        splitarea_opt=opts.SplitAreaOpts(
            is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)  #是否显示分隔区域,透明度设置为1
        ),
        textstyle_opts=opts.TextStyleOpts(color="#fff"),
    )
    .add(
        series_name="奥迪A4L时尚动感型",
        data=v1,
        linestyle_opts=opts.LineStyleOpts(color="#8B008B",width=2),   #线的颜色、宽度
    )
    .add(
        series_name="凯迪拉克CT4精英型",
        data=v2,
        linestyle_opts=opts.LineStyleOpts(color="#FFA500",width=2),   #线的颜色、宽度
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))  #不显示数字
    .set_global_opts(
        title_opts=opts.TitleOpts(title="汽车性能比较"), legend_opts=opts.LegendOpts()
    )
)
c.render_notebook()

参数介绍:
1.通过设置InitOpts的bg_color参数,可以改变背景颜色
2.通过设置add_schema的schema参数,可以添加更多纬度变量
3.通过设置LineStyleOpts的color参数,可以设置线的颜色和宽度

通过雷达图,可以清晰的比较两种汽车性能指标的好坏,非常直观

如果感觉两台车不过瘾,我们可以再加1台:

二、比较不同城市近期天气状况

from pyecharts import options as opts
from pyecharts.charts import Radar

value_bj = [
    [55, 9, 56, 0.46, 18, 6, 1],
    [25, 11, 21, 0.65, 34, 9, 2],
    [56, 7, 63, 0.3, 14, 5, 3],
    [33, 7, 29, 0.33, 16, 6, 4],
    [42, 24, 44, 0.76, 40, 16, 5],
    [82, 58, 90, 1.77, 68, 33, 6],
    [74, 49, 77, 1.46, 48, 27, 7],
    [78, 55, 80, 1.29, 59, 29, 8],
    [267, 216, 280, 4.8, 108, 64, 9],
    [185, 127, 216, 2.52, 61, 27, 10],
    [39, 19, 38, 0.57, 31, 15, 11],
    [41, 11, 40, 0.43, 21, 7, 12],
]
value_sh = [
    [91, 45, 125, 0.82, 34, 23, 1],
    [65, 27, 78, 0.86, 45, 29, 2],
    [83, 60, 84, 1.09, 73, 27, 3],
    [109, 81, 121, 1.28, 68, 51, 4],
    [106, 77, 114, 1.07, 55, 51, 5],
    [109, 81, 121, 1.28, 68, 51, 6],
    [106, 77, 114, 1.07, 55, 51, 7],
    [89, 65, 78, 0.86, 51, 26, 8],
    [53, 33, 47, 0.64, 50, 17, 9],
    [80, 55, 80, 1.01, 75, 24, 10],
    [117, 81, 124, 1.03, 45, 24, 11],
    [99, 71, 142, 1.1, 62, 42, 12],
]
c_schema = [
    {"name": "AQI", "max": 300, "min": 5},
    {"name": "PM2.5", "max": 250, "min": 20},
    {"name": "PM10", "max": 300, "min": 5},
    {"name": "CO", "max": 5},
    {"name": "NO2", "max": 200},
    {"name": "SO2", "max": 100},
]
c = (
    Radar(init_opts=opts.InitOpts(bg_color="#8B658B"))
    .add_schema(schema=c_schema, shape="polygon")
    .add("北京", value_bj,color="#8B008B",linestyle_opts=opts.LineStyleOpts(width=2))
    .add("上海", value_sh,color="#FF4500",linestyle_opts=opts.LineStyleOpts(width=2))
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="一线城市空气质量比较"))
)
c.render_notebook()

通过增加数据种类,可以比较同一纬度、不同时间下的差距,如上图,通过展示北京、上海两座城市12天的天气情况,可以清晰的看出上海的天气要比北京好。

以上就是如何用python绘制雷达图的详细内容,更多关于python绘制雷达图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python批量制作雷达图的实现方法

    前言 因为工作需要有时候要画雷达图,但是数据好多组怎么办?不能一个一个点excel去画吧,那么可以利用python进行批量制作,得到样式如下: 首先制作一个演示的excel,评分为excel随机数生成: 1 =INT((RAND()+4)*10)/10 加入标签等得到的excel样式如下(部分,共计32行): 那么接下来就是打开python写码了,本文是基于pycharm进行编写 wb = load_workbook(filename=r'C:\Users\Administrator\Deskt

  • PYTHON绘制雷达图代码实例

    这篇文章主要介绍了PYTHON绘制雷达图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.雷达图 import matplotlib.pyplot as plt import numpy as np values = [0.09,-0.05,0.20,-0.02,0.08,0.09,0.03,0.027] x = np.linspace(0,2*np.pi,9)[:-1] c = np.random.random(size=(8,3)

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • 使用python绘制温度变化雷达图

    本文实例为大家分享了python绘制温度变化雷达图的具体代码,供大家参考,具体内容如下 假设某天某地每三个小时取样的气温为 针对温度变化趋势绘制雷达图: 代码如下: import numpy as np import matplotlib.pyplot as plt #标签 labels = np.array(['3℃','5℃','6℃','3℃','1℃','3℃','3℃','2℃']) #数据个数 dataLenth = 8 #数据 data = np.array([3,5,6,3,1,

  • Python中pygal绘制雷达图代码分享

    pygal的安装和简介,大家可以参阅<pip和pygal的安装实例教程>,下面看看通过pygal实现绘制雷达图代码示例. 雷达图(Radar): import pygal radar_chart = pygal.Radar() radar_chart.title = 'V8 benchmark results' radar_chart.x_labels = ['Richards', 'DeltaBlue', 'Crypto', 'RayTrace', 'EarleyBoyer', 'RegEx

  • Python绘制雷达图时遇到的坑的解决

    ValueError: The number of FixedLocator locations (9), usually from a call to set_ticks, does not match the number of ticklabels (8). 运行书中例题时发现了这个错误, 原代码如上: import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font

  • python绘制雷达图实例讲解

    在python中,有很多用于生成基于JS的百度开源的数据可视化图表 Echarts 的类库.设置的图样都非常漂亮,小编之前研究过很多图示,用python去抓取数据,然后进行画图,经历这么多得图样,最深有感触的还是关于绘制雷达图,大家应该都遇到过需要用到雷达图的时候吧,那就一起来了解下吧. 安装模块: pip install pyecharts 导入模块: from pyecharts import options as opts 准备数据: 大家可以自行导入数据使用. 绘制雷达图: randar

  • python处理excel绘制雷达图

    本文实例为大家分享了python处理excel绘制雷达图的具体代码,供大家参考,具体内容如下 python处理excel制成雷达图,利用工具plotly在线生成,事先要安装好xlrd组件 代码: import xlrd //事先要下载好xlrd组件 import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.graph_objs import * tools.set_

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • 如何用python绘制雷达图

    目录 一.比较汽车性能 二.比较不同城市近期天气状况 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法,雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点. 下面以实际例子给大家讲解一下雷达图的应用场景和绘制方法: 一.比较汽车性能 这类雷达图一般用于比较同类事物不同纬度性能的优劣,以奥迪A4L时尚动感型和凯迪拉克CT4精英型为例,我们来画一下这两种汽车的雷达图,代码如下: import pyecharts.options as opts f

  • Python可视化神器pyecharts绘制雷达图

    目录 雷达图 雷达图模板系列 基础雷达图 单例雷达图 空气质量模板 颜色雷达图 雷达图 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.轴的相对位置和角度通常是无信息的. 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图.它相当于​ ​平行坐标图​​,轴径向排列. 平行坐标图: 平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化. 为了表示在高维空间的一个点集,在N条平行的线的背景下,(一

  • 如何用Python绘制3D柱形图

    本文主要讲解如何使用python绘制三维的柱形图,如下图 源代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #构造需要显示的值 X=np.arange(0, 5, step=1)#X轴的坐标 Y=np.arange(0, 9, step=1)#Y轴的坐标 #设置每一个(X,Y)坐标所对应的Z轴的值,在这边Z(X,Y)=X+Y Z=np.zeros(sh

随机推荐