C++实现LeetCode(123.买股票的最佳时间之三)

[LeetCode] 123.Best Time to Buy and Sell Stock III 买股票的最佳时间之三

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int n = prices.size(), g[n][3] = {0}, l[n][3] = {0};
        for (int i = 1; i < prices.size(); ++i) {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= 2; ++j) {
                l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff);
                g[i][j] = max(l[i][j], g[i - 1][j]);
            }
        }
        return g[n - 1][2];
    }
};

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int g[3] = {0};
        int l[3] = {0};
        for (int i = 0; i < prices.size() - 1; ++i) {
            int diff = prices[i + 1] - prices[i];
            for (int j = 2; j >= 1; --j) {
                l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
                g[j] = max(l[j], g[j]);
            }
        }
        return g[2];
    }
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0 

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2 

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2 

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9 

global:  0 2 9       global:  0 8 9

其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

到此这篇关于C++实现LeetCode(123.买股票的最佳时间之三)的文章就介绍到这了,更多相关C++实现买股票的最佳时间之三内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(115.不同的子序列)

    [LeetCode] 115. Distinct Subsequences 不同的子序列 Given a string S and a string T, count the number of distinct subsequences of S which equals T. A subsequence of a string is a new string which is formed from the original string by deleting some (can be n

  • C++实现LeetCode(117.每个节点的右向指针之二)

    [LeetCode] 117. Populating Next Right Pointers in Each Node II 每个节点的右向指针之二 Given a binary tree struct Node { int val; Node *left; Node *right; Node *next; } Populate each next pointer to point to its next right node. If there is no next right node, t

  • C++实现LeetCode(122.买股票的最佳时间之二)

    [LeetCode] 122.Best Time to Buy and Sell Stock II 买股票的最佳时间之二 Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie

  • C++实现LeetCode(121.买卖股票的最佳时间)

    [LeetCode] 121.Best Time to Buy and Sell Stock 买卖股票的最佳时间 Say you have an array for which the ith element is the price of a given stock on day i. If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the sto

  • C++实现LeetCode(118.杨辉三角)

    [LeetCode] 118.Pascal's Triangle 杨辉三角 Given a non-negative integer numRows, generate the first numRows of Pascal's triangle. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 5 Output: [ [1], [1,1], [1

  • C++实现LeetCode(120.三角形)

    [LeetCode] 120.Triangle 三角形 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum

  • C++实现LeetCode(116.每个节点的右向指针)

    [LeetCode] 116. Populating Next Right Pointers in Each Node 每个节点的右向指针 You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition: struct Node { int val;

  • C++实现LeetCode(119.杨辉三角之二)

    [LeetCode] 119. Pascal's Triangle II 杨辉三角之二 Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly

  • C++实现LeetCode(123.买股票的最佳时间之三)

    [LeetCode] 123.Best Time to Buy and Sell Stock III 买股票的最佳时间之三 Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You

  • C++实现LeetCode(309.买股票的最佳时间含冷冻期)

    [LeetCode] 309.Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期 Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many transactions as

  • C++实现LeetCode(188.买卖股票的最佳时间之四)

    [LeetCode] 188.Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四 Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most k transactions. Note: You m

  • Python应用自动化部署工具Fabric原理及使用解析

    介绍 Fabirc是基于python实现的SSH命令行工具,非常适合应用的自动化部署,或者执行系统管理任务. python2:pip3 install fabric python3:pip3 install fabric3 简单的例子: root@openstack:~# cat fabfile.py def hello(): print('hello world!') root@openstack:~# fab hello hello world! 这个fab简单地导入了fabfile,并执行

  • 如何让SQL运行得更快

    一.不合理的索引设计   ----例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况:   ---- 1.在date上建有一非个群集索引   select count(*) from record where date >   '19991201' and date < '19991214'and amount >   2000 (25秒)   select date,sum(amount) from record group by date   (55秒

  • [转载]让SQL运行得更快

    如何让你的SQL运行得更快     人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显.笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计.不充份的连接条件和不可优化的where子句.在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个方面分别进行总结:   ----为了更直观地说明问题,所有实例中的SQ

  • Javascript 小技巧全集第1/4页

    事件源对象  event.srcElement.tagName  event.srcElement.type  捕获释放  event.srcElement.setCapture();   event.srcElement.releaseCapture();   事件按键  event.keyCode  event.shiftKey  event.altKey  event.ctrlKey  事件返回值  event.returnValue  鼠标位置  event.x  event.y  窗体

  • 利用JS实现scroll自定义滚动效果详解

    前言 最近在公司开发项目的时候,原生滚动条中有些东西没办法自定义去精细的控制,于是开发一个类似于better-scroll一样的浏览器滚动监听的JS实现,下面我们就来探究一下自定义滚动需要考虑哪些东西,经过哪些过程.话不多说了,来一起看看详细的介绍吧. 选择滚动监听的事件 因为是自定义手机端的滚动事件,那我选择的是监听手机端的三个touch事件来实现监听,并实现了两种滚动效果,一种是通过-webkit-transform,一种是通过top属性.两种实现对于滚动的基本效果够能达到,可是top的不适

随机推荐