关于numpy数组轴的使用详解
概述
按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理。
正文
首先数组的维数比较好理解,下面我们创建一个数组:
import numpy as np # 创建一个三维数组 b=np.arange(24).reshape(4,3,2)
打印结果:
[[[ 0 1] [ 2 3] [ 4 5]] [[ 6 7] [ 8 9] [10 11]] [[12 13] [14 15] [16 17]]
b 是一个三维数组:
第一维有三个元素
第二维有三个元素
第三维有四个元素
上面的数据也可以用下列方式展示(图一)
对于下面按照aixs=0进行sum:
print(b.sum(0))
按照图一中aixs=0,对aixs=0上下对应的数据进行相加,数据从(4,3,2)降维到(3,2)
[[0+ 6+12+18=36 1+ 7+13+19=40] [2+ 8+14+20=44 3+ 9+15+21=48] [4+10+16+22=52 5+11+17+23=56]]
对于下面按照aixs=1进行sum:
print(b.sum(1))
按照图一中aixs=1,按照比1小的轴对数据进行划分(即aixs=0),然后对划分的每一部分中数据中的aixs=1上下对应的数据进行相加,数据从(4,3,2)降维到(4,2)
[[ 0+ 2+ 4=6 1+ 3+ 5=9] [ 6+ 8+10=24 7+ 9+11=27] [12+14+16=42 13+15+17=45] [18+20+22=60 19+21+23+63]]
对于下面按照aixs=2进行sum:
print(b.sum(2))
按照图一中aixs=2,按照比2小的轴对数据进行划分(即aixs=0,aixs=1),然后对划分的每一部分中数据中的aixs=2上下对应的数据进行相加,数据从(4,3,2)降维到(4,3)
[[ 0+ 1=1 2+ 3=5 4+ 5=9] [ 6+ 7=13 8+ 9=17 10+11=21] [12+13=25 14+15=29 16+17=33] [18+19=37 20+21=41 22+23=45]]
总结:
aixs的范围是0到数组的维数(不包括维数)
轴的划分是按照维数进行
相加时按照轴进行对象相加,但是不能跨越比当前轴低的轴
以上这篇关于numpy数组轴的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
对numpy中轴与维度的理解
NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank. For example, t
-
numpy数组拼接简单示例
NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: ·实际的数据 ·描述这些数据的元数据 大部分操作仅针对于元数据,而不改变底层实际的数据. 关于NumPy数组有几点必需了解的: ·NumPy数组的下标从0开始. ·同一个NumPy数组中所有元素的类型必须是相同的. NumPy数组属性 在详细介绍NumPy数组之前.先详细介绍下NumPy数组的基本属性.NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是
-
NumPy 数组使用大全
NumPy 是一个Python 库,用于 Python 编程中的科学计算.在本教程中,你将学习如何在 NumPy 数组上以多种方式添加.删除.排序和操作元素. NumPy 提供了一个多维数组对象和其他派生数组,例如掩码数组和掩码多维数组. 为什么要用 NumPy NumPy 提供了一个 ndarray 对象,可以使用它来对任何维度的数组进行操作. ndarray 代表 N 维数组,其中 N 是任意数字.这意味着 NumPy 数组可以是任何维度的. 与 Python 的 List 相比,NumPy
-
关于numpy数组轴的使用详解
概述 按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理. 正文 首先数组的维数比较好理解,下面我们创建一个数组: import numpy as np # 创建一个三维数组 b=np.arange(24).reshape(4,3,2) 打印结果: [[[ 0 1] [ 2 3] [ 4 5]] [[ 6 7] [ 8 9] [10 11]] [[12 1
-
Python NumPy 数组索引的示例详解
目录 前言 1.访问数组元素 2.访问 2-D Arrays(数组) 3.访问 3-D Arrays(数组) 4.负索引 前言 NumPy(Numerical Python的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然地使用数组和矩阵.NumPy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能.本文主要介绍Python NumPy 数组索引及访问数组元素. 1.访问数组元素 数组索引与访问数组元素相同. 您可以通过引用其索引号来访问数组元素. Nu
-
对numpy中的数组条件筛选功能详解
在程序设计中,时常会遇到数据的唯一化.相同.相异信息的提取等工作,在格式化的向量存储矩阵中南,numpy能够提供比较不错的快速处理功能. 1,唯一化的实现: In [63]: data = np.array(['int','float','int','boolean','double','boolean']) In [64]: data Out[64]: array(['int', 'float', 'int', 'boolean', 'double', 'boolean'], dtype='|
-
Python Numpy中数组的集合操作详解
我们知道两个 set 对象之间,可以取交集.并集.差集.对称差集,举个例子: s1 = {1, 2, 3} s2 = {2, 3, 4} """ &: 交集 |: 并集 -: 差集 ^: 对称差集 """ # 以下几种方式是等价的 # 但是一般我们都会使用操作符来进行处理,因为比较方便 print(s1 & s1) print(s1.intersection(s2)) print(set.intersection(s1, s2)
-
numpy中索引和切片详解
索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy()). import numpy as np #导入numpy arr = np.arange(10) #类似于list的range() arr Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[4] #索引(注意是从
-
Python NumPy教程之二元计算详解
二元运算符作用于位,进行逐位运算.二元运算只是组合两个值以创建新值的规则. numpy.bitwise_and(): 此函数用于计算两个数组元素的按位与. 此函数计算输入数组中整数的底层二进制表示的按位与. 代码#1: # 解释 bitwise_and() 函数的 Python 程序 import numpy as geek in_num1 = 10 in_num2 = 11 print ("Input number1 : ", in_num1) print ("Input
-
对python中list的拷贝与numpy的array的拷贝详解
1.python中列表list的拷贝,会有什么需要注意的呢? python变量名相当于标签名. list2=list1 ,直接赋值,实质上指向的是同一个内存值.任意一个变量list1(或list2)发生改变,都会影响另一个list2(或list1). eg: >>> list1=[1,2,3,4,5,6] >>> list2=list1 >>> list1[2]=88 >>> list1 [1, 2, 88, 4, 5, 6] >
-
关于Numpy数据类型对象(dtype)使用详解
常用方法 #记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >>>type(float) dtype('float64') # 查询字符代码 >>> dtype('f') dtype('float32') >>> dtype('d') dtype('float64') # 查询双字符代码 >>> dtype('f8') dtype('float64') # 获取所有字符代码 >>>
-
python3中numpy函数tile的用法详解
tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组,我们还是使用具体的例子来说明问题:(至于为什么是在numpy.lib.shape_base中,我还是不太清楚.) 其实tile就是重复的意思,把一个数组a,当做模板,重复几次,生成另一个数组b 至于矩阵可以不以这样,还没有试过. 例子: 创建一个a,使用tile来创建b from numpy import * a=[0,1,2]
-
Python Numpy,mask图像的生成详解
什么是掩膜(mask) 在numpy中,有一个模块叫做ma,这个模块几乎复制了numpy里面的所有函数,当然底层里面都换成了对自己定义的新的数据类型MaskedArray的操作. 我们来看最基本的array定义. An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. MaskedArray是一个可能带有掩膜信
随机推荐
- EditPlus中的正则表达式 实战(1)
- 当网站不允许上传asp cer cdx htr文件时的一个解决方法!
- JQuery入门—编写一个简单的JQuery应用案例
- Python实现模拟登录及表单提交的方法
- asp.net URL 显示乱码 解决方法
- javascript动态控制服务器控件实例
- windows下安装pear及phpunit(注意配置好php命令行环境)
- Python3.2模拟实现webqq登录
- jquery checkbox实现单选小例
- PHP检测字符串是否为UTF8编码的常用方法
- js实现tab选项卡函数代码
- JavaScript日期时间格式化函数分享
- 简单几步实现返回顶部效果
- 深入理解Django中内置的用户认证
- jquery 多级下拉菜单核心代码
- 单台服务器的PHP进程之间实现共享内存的方法
- 使用python搭建Django应用程序步骤及版本冲突问题解决
- Django自定义manage命令实例代码
- python实现三维拟合的方法
- Appium+python自动化怎么查看程序所占端口号和IP