python实现图像全景拼接

图像的全景拼接包括三大部分:特征点提取与匹配、图像配准、图像融合。

1、基于SIFT的特征点的提取与匹配

利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。

具体步骤:

1). 生成高斯差分金字塔(DOG金字塔),尺度空间构建

2). 空间极值点检测(关键点的初步查探)

3). 稳定关键点的精确定位

4). 稳定关键点方向信息分配

5). 关键点描述

6). 特征点匹配

2、图像配准

图像配准是一种确定待拼接图像间的重叠区域以及重叠位置的技术,它是整个图像拼接的核心。本节采用的是基于特征点的图像配准方法,即通过匹配点对构建图像序列之间的变换矩阵,从而完成全景图像的拼接。

变换矩阵H求解是图像配准的核心,其求解的算法流程如下。

1)检测每幅图像中特征点。

2)计算特征点之间的匹配。

3)计算图像间变换矩阵的初始值。

4)迭代精炼H变换矩阵。

5)引导匹配。用估计的H去定义对极线附近的搜索区域,进一步确定特征点的对应。

6)重复迭代4)和5)直到对应点的数目稳定为止。

设图像序列之间的变换为投影变换

可用4组最佳匹配计算出H矩阵的8 个自由度参数hi=( i=0,1,...,7),并以此作为初始值。

为了提高图像配准的精度,本节采用RANSAC算法对图像变换矩阵进行求解与精炼,达到了较好的图像拼接效果。RANSAC算法的思想简单而巧妙:首先随机地选择两个点,这两个点确定了一条直线,并且称在这条直线的一定范围内的点为这条直线的支撑。这样的随机选择重复数次,然后,具有最大支撑集的直线被确认为是样本点集的拟合。在拟合的误差距离范围内的点被认为是内点,它们构成一致集,反之则为外点。根据算法描述,可以很快判断,如果只有少量外点,那么随机选取的包含外点的初始点集确定的直线不会获得很大的支撑,值得注意的是,过大比例的外点将导致RANSAC算法失败。在直线拟合的例子中,由点集确定直线至少需要两个点;而对于透视变换,这样的最小集合需要有4个点。

3、图像融合

因为相机和光照强度的差异,会造成一幅图像内部,以及图像之间亮度的不均匀,拼接后的图像会出现明暗交替,这样给观察造成极大的不便。 亮度与颜色均衡处理,通常的处理方式是通过相机的光照模型,校正一幅图像内部的光照不均匀性,然后通过相邻两幅图像重叠区域之间的关系,建立相邻两幅图像之间直方图映射表,通过映射表对两幅图像做整体的映射变换,最终达到整体的亮度和颜色的一致性。

具体实现:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

if __name__ == '__main__':
top, bot, left, right = 100, 100, 0, 500
img1 = cv.imread('1.jpg')
img2 = cv.imread('2.jpg')
srcImg = cv.copyMakeBorder(img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
testImg = cv.copyMakeBorder(img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d_SIFT().create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)

# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]

good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
matchesMask[i] = [1, 0]

draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray, kp2, matches, None, **draw_params)
plt.imshow(img3, ), plt.show()

rows, cols = srcImg.shape[:2]
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
warpImg = cv.warpPerspective(testImg, np.array(M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)

for col in range(0, cols):
if srcImg[:, col].any() and warpImg[:, col].any():
left = col
break
for col in range(cols-1, 0, -1):
if srcImg[:, col].any() and warpImg[:, col].any():
right = col
break

res = np.zeros([rows, cols, 3], np.uint8)
for row in range(0, rows):
for col in range(0, cols):
if not srcImg[row, col].any():
res[row, col] = warpImg[row, col]
elif not warpImg[row, col].any():
res[row, col] = srcImg[row, col]
else:
srcImgLen = float(abs(col - left))
testImgLen = float(abs(col - right))
alpha = srcImgLen / (srcImgLen + testImgLen)
res[row, col] = np.clip(srcImg[row, col] * (1-alpha) + warpImg[row, col] * alpha, 0, 255)

# opencv is bgr, matplotlib is rgb
res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
# show the result
plt.figure()
plt.imshow(res)
plt.show()
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
matchesMask = None

实验结果:

1、室内场景:

原图1

原图2

拼接后:

2、室外场景:

场景1:

原图1

原图2

拼接后:

场景2:

原图1

原图2

拼接后:

场景3:

原图1

原图2

拼接后:

总结:

本文分别针对室内和室外两种情况对两张图像做全景拼接,发现室内情况下拼接的效果较为好。在室外场景1情况下,两张图像有近景和远景结合,两张图像拼接后近景的图像被放大并有一定程度的倾斜;在场景2中,两张图像都是远景,拼接后的效果还不错但是在拼接后图像的中上方出现了拼接缝;场景3是在不同明亮程度下图像的拼接可以发现拼接后的图像出现明显的明暗差距,并且拼接缝明显两张图像没有很好的拼接在一起,出现很多没有重合的地方。

本实验最初是用opencv-contrib3.4.5版本,但是由于sift的专利限制无法使用,随后用opencv-contriv3.4.2代码可以运行,不会出现问题。方法:先卸载当前版本的opencv并安装:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16

本文已被收录到专题《python图片处理操作》,欢迎大家点击学习更多精彩内容。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python+OpenCV实现图像的全景拼接

    本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下 环境:python3.5.2 + openCV3.4 1.算法目的 将两张相同场景的场景图片进行全景拼接. 2.算法步骤 本算法基本步骤有以下几步: 步骤1:将图形先进行桶形矫正 没有进行桶形变换的图片效果可能会像以下这样: 图片越多拼接可能就会越夸张. 本算法是将图片进行桶形矫正.目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形. 步骤2:特征点匹配 本

  • python opencv 图像拼接的实现方法

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移与合成,与图像内容无关.高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图. 具有相同尺寸的图A和图B含有相同的部分与不同的部分,如图所示:             用基于特征的图像拼接实现后: 设图像高为h,相同部分的宽度为wx 拼接后图像的宽w=wA+wB-wx 因此,可以先构建一个高为h,宽为W*2的空白图像,将左图像向右平移wx,右图像粘贴在右侧.则右图像刚好覆盖左图像中的相同部分

  • python实现图像拼接功能

    利用Python将Market1501的分割图片和原图两张图片进行拼接成一左一右一张图片,并将图片的像素值调整成256*128. 所有文件夹: 文件夹下的所有原图: 文件夹下的所有的分割图片: 代码如下: import PIL.Image as Image import os IMAGES_PATH = 'E:/gyx/Learning/Practice/4/data/market1501_seg_1/test/ori_img/' # 原图片集地址 IMAGES_PATH_1 = 'E:/gyx

  • python+gdal+遥感图像拼接(mosaic)的实例

    作为摄影测量与遥感的从业者,笔者最近开始深入研究gdal,为工作打基础!个人觉得gdal也是没有什么技术含量,调用别人的api.但是想想这也是算法应用的一个技能,多学无害! 关于遥感图像的镶嵌,主要分为6大步骤: step1: 1)对于每一幅图像,计算其行与列: 2)获取左上角X,Y 3)获取像素宽和像素高 4)计算max X 和 min Y,切记像素高是负值 maxX1 = minX1 + (cols1 * pixelWidth) minY1 = maxY1 + (rows1 * pixelH

  • python实现图像拼接

    本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 1.待拼接的图像 2. 基于SIFT特征点和RANSAC方法得到的图像特征点匹配结果 3.图像变换结果 4.代码及注意事项 import cv2 import numpy as np def cv_show(name, image): cv2.imshow(name, image) cv2.waitKey(0) cv2.destroyAllWindows() def detectAndCompute(image):

  • python opencv进行图像拼接

    本文实例为大家分享了python opencv进行图像拼接的具体代码,供大家参考,具体内容如下 思路和方法 思路 1.提取要拼接的两张图片的特征点.特征描述符: 2.将两张图片中对应的位置点找到,匹配起来: 3.如果找到了足够多的匹配点,就能将两幅图拼接起来,拼接前,可能需要将第二幅图透视旋转一下,利用找到的关键点,将第二幅图透视旋转到一个与第一幅图相同的可以拼接的角度: 4.进行拼接: 5.进行拼接后的一些处理,让效果看上去更好. 实现方法 1.提取图片的特征点.描述符,可以使用opencv创

  • python+OpenCV实现图像拼接

    本文实例为大家分享了利用python和OpenCV实现图像拼接,供大家参考,具体内容如下 python+OpenCV实现image stitching 在最新的OpenCV官方文档中可以找到C++版本的Stitcher类的说明, 但是python版本的还没有及时更新, 本篇对python版本的实现做一个简单的介绍. 由于官方文档中还没有python版本的Stitcher类的说明, 因此只能自己去GitHub源码上找, 以下是stitching的样例: from __future__ import

  • python实现单张图像拼接与批量图片拼接

    本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 一.效果  二.代码 1.单张图片拼接 # 图片拼接 from PIL import Image # pil paste可以进行图片拼接 import cv2 import numpy as np path="F:/out/"+str(0)+".jpg" img_out=cv2.imread(path) num=5 for i in range(1,num): path="F

  • python实现图像全景拼接

    图像的全景拼接包括三大部分:特征点提取与匹配.图像配准.图像融合. 1.基于SIFT的特征点的提取与匹配 利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置.尺度.方向信息. 具体步骤: 1). 生成高斯差分金字塔(DOG金字塔),尺度空间构建 2). 空间极值点检测(关键点的初步查探) 3). 稳定关键点的精确定位 4). 稳定关键点方向信息分配 5). 关键点描述 6). 特征点匹配 2.图像配准 图像配准是一种确定待拼接图像间的重叠区域以及重叠位置的技术,它是整个图像拼接

  • Python实现图像几何变换

    本文实例讲述了Python实现图像几何变换的方法.分享给大家供大家参考.具体实现方法如下: import Image try: im=Image.open('test.jpg') #out = im.resize((128, 128)) #改变大小 #out = im.rotate(45) #45°旋转 #out = im.transpose(Image.FLIP_LEFT_RIGHT) #水平翻转 #out = im.transpose(Image.FLIP_TOP_BOTTOM) #垂直翻转

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • 使用Python实现图像标记点的坐标输出功能

    Sometimes we have need to interact  with an application,for example by marking points in an image,or you need to annotation some training data.PyLab comes with a simple function ginput() the let's you do just that .Here's a short example. from PIL im

  • 详解Python计算机视觉 图像扭曲(仿射扭曲)

    对图像块应用仿射变换,我们将其称为图像扭曲(或者仿射扭曲).该操作不仅经常应用在计算机图形学中,而且经常出现在计算机视觉算法中. 一.仿射变换原理 仿射变换能够保持图像的"平直性",包括旋转,缩放,平移,错切操作.对于三个点,仿射变换可以将一副图像进行扭曲,使得三对对应点对可以完美地匹配上.仿射变换具有6个自由度,有三个对应点对可以给出6个约束条件(对于这三个对应点对,x和y坐标必须都要匹配) 仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射.由一个非奇异的线性变换(

  • python提取图像的名字*.jpg到txt文本的方法

    如下所示: <span style="font-size:18px;"># -*- coding:utf-8 -*- import sys sys.path.append('E:\\Anaconda\\libs') import os #os:操作系统相关的信息模块 import random #导入随机函数 #存放原始图片地址 data_base_dir = "C:\\Users\\Administrator.MICROSO-1HCAN56\\Desktop\\

  • Python 判断图像是否读取成功的方法

    大批量处理数据时,若因个别图像错误导致代码中断,从头再来比较浪费时间 对未成功读入的图像跳过(读图 import cv2) for i in range(1,1000): image = cv2.imdecode(np.fromfile('xxx.jpg', dtype=np.uint8), -1) try: image.shape except: print('fail to read xxx.jpg') continue ...... 若该图像可能不存在,即没有该图像的文件名,也可用try判

  • Python cv2 图像自适应灰度直方图均衡化处理方法

    __author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy') # normalization mri_max = np.amax(mri_img) mri_min = np.amin(mri_img) mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255 mri_img = mri_img.astype('uint8') r,

  • 用Python去除图像的黑色或白色背景实例

    用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图 对此有两个思路: 用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦) 对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是 在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行

  • Python实现图像的垂直投影示例

    Python + OpenCV 直接上代码 import cv2 import numpy as np from matplotlib import pyplot as plt from PIL import Image img=cv2.imread('0002.jpg') #读取图片,装换为可运算的数组 GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #将BGR图转为灰度图 ret,thresh1=cv2.threshold(GrayImage,1

随机推荐