Python龙贝格法求积分实例

我就废话不多说了,直接上代码吧!

# 龙贝格法求积分
import math
a=0    # 积分下限
b=1    # 积分上限
eps=10**-5  # 精度
T=[]   # 复化梯形序列
S=[]   # Simpson序列
C=[]   # Cotes序列
R=[]   # Romberg序列
def func(x): # 被积函数
 y=math.exp(-x)
 return y
def Romberg(a,b,eps,func):
 h = b - a
 T.append(h * (func(a) + func(b)) / 2)
 ep=eps+1
 m=0
 while(ep>=eps):
  m=m+1
  t=0
  for i in range(2**(m-1)-1):
   t=t+func(a+(2*(i+1)-1)*h/2**m)*h/2**m
  t=t+T[-1]/2
  T.append(t)
  if m>=1:
   S.append((4**m*T[-1]-T[-2])/(4**m-1))
  if m>=2:
   C.append((4**m*S[-1]-S[-2])/(4**m-1))
  if m>=3:
   R.append((4**m*C[-1]-C[-2])/(4**m-1))
  if m>4:
   ep=abs(10*(R[-1]-R[-2]))
Romberg(a,b,eps,func)
# print(T)
# print(S)
# print(C)
# print(R)
# 计算机参考值0.6321205588
print("积分结果为:{:.5f}".format(R[-1]))

补充拓展:python实现数值分析之龙贝格求积公式

复合梯形公式的提出:

1.首先,什么是梯形公式:

梯形公式表明:f(x)在[a,b]两点之间的积分(面积),近似地可以用一个梯形的面积表示。

2.显然,这个梯形公式对于不同的f(x)而言,其代数精度不同。为了能适合更多的f(x),我们一般使用牛顿-科特斯公式其中比较高次的公式来进行数值求积。但高次的缺陷是当次数大于8次,求积公式就会不稳定。因此,我们用于数值积分的牛顿-科特斯公式通常是一次的梯形公式、二次的辛普森公式和4此的科特斯公式。

辛普森公式:

科特斯公式:

3.牛顿-科特斯公式次数高于8次不能用,但是低次公式又精度不够。解决办法就是使用:复合梯形求积公式。复合求积公式就是在区间[a,b]上划分n格小区间。一个大区间[a,b]上用一次梯形公式精度不够,那么在n个小区间都使用梯形公式,最后将小区间的和累加起来,就可以得到整个大区间[a,b]的积分近似值。

a = x0 < x1 <x2 …<xn-1 < xn =b

令Tn为将[a,b]划分n等分的复合梯形求积公式,h =(b-a)/n为小区间的长度。h/2类似于梯形公式中的(b-a)/2

注意:这里的k+1是下标

通过研究我们发现:T2n与Tn之间存在一些递推关系。

注意:这里的k+1/2是下标。并且其中的h/2是中的h是Tn(n等分中的h = (b-a)/n))

于是乎,我们可以一次推出T1,T2,T4,T8…T2n序列

引出这些之后,才是我们的主题:龙贝格求积公式

龙贝格求积公式的实质是用T2n序列构造,S2n序列,

再用S2n序列构造C2n序列

最后用C2n序列构造R2n序列。

编程实现,理解下面的几个公式即可。

python编程代码如下:

# coding=UTF-8
# Author:winyn
'''
给定一个函数,如:f(x)= x^(3/2),和积分上下限a,b,用机械求积Romberg公式求积分。

'''
import numpy as np

def func(x):
 return x**(3/2)

class Romberg:
 def __init__(self, integ_dowlimit, integ_uplimit):
  '''
  初始化积分上限integ_uplimit和积分下限integ_dowlimit
  输入一个函数,输出函数在积分上下限的积分

  '''
  self.integ_uplimit = integ_uplimit
  self.integ_dowlimit = integ_dowlimit

 def calc(self):
  '''
  计算Richardson外推算法的四个序列

  '''
  t_seq1 = np.zeros(5, 'f')
  s_seq2 = np.zeros(4, 'f')
  c_seq3 = np.zeros(3, 'f')
  r_seq4 = np.zeros(2, 'f')
  # 循环生成hm间距序列
  hm = [(self.integ_uplimit - self.integ_dowlimit) / (2 ** i) for i in range(0,5)]
  print(hm)
  # 循环生成t_seq1
  fa = func(self.integ_dowlimit)
  fb = func(self.integ_uplimit)

  t0 = (1 / 2) * (self.integ_uplimit - self.integ_dowlimit) * (fa+fb)
  t_seq1[0] = t0

  for i in range(1, 5):
   sum = 0
   # 多出来的点的累加和
   for each in range(1, 2**i,2):
    sum =sum + hm[i]*func( self.integ_dowlimit+each * hm[i])#计算两项值
   temp1 = 1 / 2 * t_seq1[i - 1]
   temp2 =sum
   temp = temp1 + temp2
   # 求t_seql的1-4位
   t_seq1[i] = temp
  print('T序列:'+ str(list(t_seq1)))
  # 循环生成s_seq2
  s_seq2 = [round((4 * t_seq1[i + 1] - t_seq1[i]) / 3,6) for i in range(0, 4)]
  print('S序列:' + str(list(s_seq2)))
  # 循环生成c_seq3
  c_seq3 = [round((4 ** 2 * s_seq2[i + 1] - s_seq2[i]) / (4 ** 2 - 1),6) for i in range(0, 3)]
  print('C序列:' + str(list(c_seq3)))
  # 循环生成r_seq4
  r_seq4 = [round((4 ** 3 * c_seq3[i + 1] - c_seq3[i]) / (4 ** 3 - 1),6) for i in range(0, 2)]
  print('R序列:' + str(list(r_seq4)))
  return 'end'

rom = Romberg(0, 1)
print(rom.calc())

以上这篇Python龙贝格法求积分实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 细数nn.BCELoss与nn.CrossEntropyLoss的区别

    以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题.可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类. 不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与CrossEntropyLoss是不同的.下面我详细讲一下哪里不同. 1.使用nn.BCELoss需要在

  • Pytorch对Himmelblau函数的优化详解

    Himmelblau函数如下: 有四个全局最小解,且值都为0,这个函数常用来检验优化算法的表现如何: 可视化函数图像: import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himmelblau(x): return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2 x = np.ar

  • python计算导数并绘图的实例

    我就废话不多说了,直接上代码吧! import math import numpy as np import matplotlib.pyplot as plt from sympy import * #用于求导积分等科学计算 def dif(left,right,step):#求导 左右区间以及间隔 x,y = symbols('x y')#引入x y变量 expr = pow(x,5)#计算表达式 x_value = [] #save x value y_value = [] #save x

  • Python龙贝格法求积分实例

    我就废话不多说了,直接上代码吧! # 龙贝格法求积分 import math a=0 # 积分下限 b=1 # 积分上限 eps=10**-5 # 精度 T=[] # 复化梯形序列 S=[] # Simpson序列 C=[] # Cotes序列 R=[] # Romberg序列 def func(x): # 被积函数 y=math.exp(-x) return y def Romberg(a,b,eps,func): h = b - a T.append(h * (func(a) + func(

  • 复化梯形求积分实例——用Python进行数值计算

    用程序来求积分的方法有很多,这篇文章主要是有关牛顿-科特斯公式. 学过插值算法的同学最容易想到的就是用插值函数代替被积分函数来求积分,但实际上在大部分场景下这是行不通的. 插值函数一般是一个不超过n次的多项式,如果用插值函数来求积分的话,就会引进高次多项式求积分的问题.这样会将原来的求积分问题带到另一个求积分问题:如何求n次多项式的积分,而且当次数变高时,会出现龙悲歌现象,误差反而可能会增大,并且高次的插值求积公式有可能会变得不稳定:详细原因不赘述. 牛顿-科特斯公式解决这一问题的办法是将大的插

  • 使用Python中的reduce()函数求积的实例

    编写一个prod()函数,可以接受一个list并利用reduce()求积. from functools import reduce def prod(x,y): return x * y L = reduce(prod,[3,5,7,9]) print(L) 打印结果如下: 以上这篇使用Python中的reduce()函数求积的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 利用python求积分的实例

    python的numpy库集成了很多的函数.利用其中的函数可以很方便的解决一些数学问题.本篇介绍如何使用python的numpy来求解积分. 代码如下: # -*- coding: utf-8 -*- import numpy as np from scipy.integrate import quad,dblquad,nquad def main(): print quad(lambda x:np.exp(-x),0,np.inf) '''求积分,np.inf代表正无穷. 结果第一个数值代表运

  • Python 做曲线拟合和求积分的方法

    这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目. 主要的就是首先要安装Anaconda  python库,然后来运用这些数学工具. ###最小二乘法试验### import numpy as np import pymysql from scipy.optimize import leastsq from scipy import integrate ###绘图,看拟合效

  • Python迷宫生成和迷宫破解算法实例

    迷宫生成 1.随机PRIM 思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通.重复以上步骤直到列表为空,迷宫生成完毕.这种方式生成的迷宫难度高,岔口多. 效果: 代码: import random import numpy as np from matplotlib import pyplot as plt def build_tw

  • python 简单备份文件脚本v1.0的实例

    整体思路 将要备份的目录列为一个列表,通过执行系统命令,进行压缩.备份. 这样关键在于构造命令并使用 os.system( )来执行,一开始使用zip 命令始终没有成功,后来发现Windows下并没有这个命令,还要安装GnuWin32项目,后来安装了7z,实现了使用系统命令进行压缩. 压缩命令 通过下载7z压缩,将7z.exe 7z,dll 加入系统环境变量目录,通过以下命令进行压缩.解压7z a test.zip a.txt b.txt # 指定若干文件 7z a test.zip f:/te

  • Python之自动获取公网IP的实例讲解

    0.预备知识 0.1 SQL基础 ubuntu.Debian系列安装: root@raspberrypi:~/python-script# apt-get install mysql-server Redhat.Centos 系列安装: [root@localhost ~]# yum install mysql-server 登录数据库 pi@raspberrypi:~ $ mysql -uroot -p -hlocalhost Enter password: Welcome to the Ma

  • Python爬虫包 BeautifulSoup 递归抓取实例详解

    Python爬虫包 BeautifulSoup  递归抓取实例详解 概要: 爬虫的主要目的就是为了沿着网络抓取需要的内容.它们的本质是一种递归的过程.它们首先需要获得网页的内容,然后分析页面内容并找到另一个URL,然后获得这个URL的页面内容,不断重复这一个过程. 让我们以维基百科为一个例子. 我们想要将维基百科中凯文·贝肯词条里所有指向别的词条的链接提取出来. # -*- coding: utf-8 -*- # @Author: HaonanWu # @Date: 2016-12-25 10:

  • Python找出最小的K个数实例代码

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 这个题目完成的思路有很多,很多排序算法都可以完成既定操作,关键是复杂度性的考虑.以下几种思路当是笔者抛砖引玉,如果读者有兴趣可以自己再使用其他方法一一尝试. 思路1:利用冒泡法 临近的数字两两进行比较,按照从小到大的顺序进行交换,如果前面的值比后面的大,则交换顺序.这样一趟过去后,最小的数字被交换到了第一位:然后是次小的交换到了第二位,...,依次直到第k个数,停

随机推荐