使用python 计算百分位数实现数据分箱代码

对于百分位数,相信大家都比较熟悉,以下解释源引自百度百科。

百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值数值大小排列。如,处于p%位置的值称第p百分位数。

因为百分位数是采用等分的方式划分数据,因此也可用此方法进行等频分箱。

import pandas as pd
import numpy as np
import random
t=pd.DataFrame(columns=['l','s'])
#随机生成1000个0到999整数
t['l']=[random.randint(0,999) for _range in range(1000)]
#定义s为1,便于统计
t['s']=1
#通过np.percentile找到分位点
l_bin=[]
for i in range(0,101,10):
 l_bin.append(np.percentile(t['l'],i))
#分位点最后一个数加上一个极小的数,否则切分后数字999会标记为nan
l_bin[-1]+=1/1e10
print('分位点:',np.array(l_bin).round(2))
#对随机数进行切分,right=False时左闭右开
t['box']=pd.cut(t['l'],l_bin,right=False)
tj=t.groupby('box')['s'].agg('sum')
print('分箱统计')
print(tj)
#生成新的标签
label=[]
for i in range(len(l_bin)-1):
 label.append(str(l_bin[i].round(4))+'+')
#原标签和自定义的新标签生成字典
list_box_td=list(set(t['box']))
list_box_td.sort()
dict_t=dict(zip(list_box_td,label))
#根据字典进行替换
t['new_box']=t['box'].replace(dict_t)
print('新分箱统计')
tj=t.groupby('new_box')['s'].agg('sum')
print(tj)
del t['s']
print(t.head())

输出结果:

分位点: [ 0. 90.9 194.6 290. 386. 473.5 589. 688. 783.2 884.2
 997. ]
分箱统计
box
[0.0, 90.9)  100
[90.9, 194.6)  100
[194.6, 290.0)  99
[290.0, 386.0)  99
[386.0, 473.5) 102
[473.5, 589.0)  99
[589.0, 688.0) 100
[688.0, 783.2) 101
[783.2, 884.2) 100
[884.2, 997.0) 100
Name: s, dtype: int64
新分箱统计
new_box
0.0+  100
194.6+  99
290.0+  99
386.0+ 102
473.5+  99
589.0+ 100
688.0+ 101
783.2+ 100
884.2+ 100
90.9+  100
Name: s, dtype: int64
  l    box new_box
0 253 [194.6, 290.0) 194.6+
1 468 [386.0, 473.5) 386.0+
2 130 [90.9, 194.6) 90.9+
3 476 [473.5, 589.0) 473.5+
4 656 [589.0, 688.0) 589.0+

可以看出每个分箱内,约有100个数字。根据这个方法,可以自定义一些标签。

补充拓展:python 计算动态时点的百分位数

【说明】

1、动态时点:每次计算的数据框为截止于当前行的数据,即累计行(多次计算);

2、静态时点(当前时间):计算的数据框为所有行(一次计算);

【代码】

test = pd.DataFrame(np.random.randint(1, 10, size=10), columns=['value']) # 生成[1,10]的随机整数
test['pct_sf'] = test.index.map(lambda x: test.ix[:x].value.rank(pct=True)[x]) # 动态时点
test['pct'] = test.value.rank(pct=True) # 当前时点
test

以上这篇使用python 计算百分位数实现数据分箱代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python自动分箱,计算woe,iv的实例代码

    笔者之前用R开发评分卡时,需要进行分箱计算woe及iv值,采用的R包是smbinning,它可以自动进行分箱.近期换用python开发, 也想实现自动分箱功能,找到了一个woe包,地址https://pypi.org/project/woe/,可以直接 pip install woe安装. 由于此woe包官网介绍及给的例子不是很好理解,关于每个函数的使用也没有很详细的说明,经过一番仔细探究后以此文记录一下该woe包的使用及其计算原理. 例子 官方给的例子不是很好理解,以下是我写的一个使用示例.以

  • python数据预处理 :数据抽样解析

    何为数据抽样: 抽样是数据处理的一种基本方法,常常伴随着计算资源不足.获取全部数据困难.时效性要求等情况使用. 抽样方法: 一般有四种方法: 随机抽样 直接从整体数据中等概率抽取n个样本.这种方法优势是,简单.好操作.适用于分布均匀的场景:缺点是总体大时无法一一编号 系统抽样 又称机械.等距抽样,将总体中个体按顺序进行编号,然后计算出间隔,再按照抽样间隔抽取个体.优势,易于理解.简便易行.缺点是,如有明显分布规律时容易产生偏差. 群体抽样 总体分群,在随机抽取几个小群代表总体.优点是简单易行.便

  • 使用pandas实现连续数据的离散化处理方式(分箱操作)

    Python实现连续数据的离散化处理主要基于两个函数,pandas.cut和pandas.qcut,前者根据指定分界点对连续数据进行分箱处理,后者则可以根据指定箱子的数量对连续数据进行等宽分箱处理,所谓等宽指的是每个箱子中的数据量是相同的. 下面简单介绍一下这两个函数的用法: # 导入pandas包 import pandas as pd ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32] # 待分箱数据 bins = [18, 25,

  • 使用python 计算百分位数实现数据分箱代码

    对于百分位数,相信大家都比较熟悉,以下解释源引自百度百科. 百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n个观测值按数值大小排列.如,处于p%位置的值称第p百分位数. 因为百分位数是采用等分的方式划分数据,因此也可用此方法进行等频分箱. import pandas as pd import numpy as np import random t=pd.DataFrame(columns=['l','s']) #

  • Python实现对相同数据分箱的小技巧分享

    目录 前言 思路 类型一:数字 类型二:元组 附:利用Python的cut方法可以对数据进行分箱. 总结 前言 博主最近工作中刚好用到数据分箱操作(对相同数据进行遍历比较,避免了全部遍历比较,大大减少了电脑IO次数,提高程序运行速度),翻了很多博文都没有找到解决方法,写一下我自己的解决思路!!! 什么是分箱? 简单点说就是将不同的东西,按照特定的条件放到一个指定容器里,比如水果 把绿色的放一个篮子里,红色一个篮子等等,这个篮子就是箱,而水果就是数据 颜色就是条件 什么样式的数据要进行分箱 数据主

  • python实现连续变量最优分箱详解--CART算法

    关于变量分箱主要分为两大类:有监督型和无监督型 对应的分箱方法: A. 无监督:(1) 等宽 (2) 等频 (3) 聚类 B. 有监督:(1) 卡方分箱法(ChiMerge) (2) ID3.C4.5.CART等单变量决策树算法 (3) 信用评分建模的IV最大化分箱 等 本篇使用python,基于CART算法对连续变量进行最优分箱 由于CART是决策树分类算法,所以相当于是单变量决策树分类. 简单介绍下理论: CART是二叉树,每次仅进行二元分类,对于连续性变量,方法是依次计算相邻两元素值的中位

  • python 基于卡方值分箱算法的实现示例

    原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡方值,对卡方值最小的箱向后合并,代码如下 import pandas as pd import numpy as np import scipy from scipy import stats def chi_bin(DF,var,target,binnum=5,maxcut=20): ''' DF:data var:variable target:target / label binnum:

  • python使用pandas实现数据分割实例代码

    本文研究的主要是Python编程通过pandas将数据分割成时间跨度相等的数据块的相关内容,具体如下. 先上数据,有如下dataframe格式的数据,列名分别为date.ip,我需要统计每5s内出现的ip,以及这些ip出现的频数. ip date 0 127.0.0.21 15/Jul/2017:18:22:16 1 127.0.0.13 15/Jul/2017:18:22:16 2 127.0.0.11 15/Jul/2017:18:22:17 3 127.0.0.11 15/Jul/2017

  • Python计算公交发车时间的完整代码

    问题描述 公交车每天会按照一定间隔发车 , 由于不同时间段经过拥堵路段的用时不 - 样,所以给定路线下公交车每趟 ( 每车次 ) 行驶时间差异也很大,现在给出某路线某天各车次公交车离开始发站和到达终点站的时间,请求出该天耗时最长车次的行驶时间.输入说明 : 第 - - 行是一个整数 N, 示接下来的公交车车次的总数.之后是 N 行,每行开始是字母 S 或 Z, 表示是从始发站开出还是终点站开出.之后两个时间表示起始时间,时间给出方式为小时 + 分钟的形式,如 S 0830 1210 表示 8 点

  • python 处理微信对账单数据的实例代码

    下面一段代码给大家介绍python 处理微信对账单数据,具体代码如下所示: #下载对账单并存储到数据库 @app.route("/bill/<string:date>",methods=["GET","POST"]) def download_bill(date): pay = MyWeiXinPay()#自己的支付类 bill= pay.download_mybill(date)#下载原始对账单,下载下来为字符串 billArray

  • python计算无向图节点度的实例代码

    废话不多说了,直接上代码吧: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3的无标度的图 print ("某个节点的度:",G.d

  • Python计算两个矩形重合面积代码实例

    这篇文章主要介绍了Python 实现两个矩形重合面积代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 计算两个矩形的重合面积 import math x1, y1, x2, y2 = input().split(" ") x1, y1, x2, y2=int(x1), int(y1), int(x2), int(y2) # print(x1, y1, x2, y2) x1,x2 = min(x1,x2),max(x1,

  • 使用Python爬取Json数据的示例代码

    一年一度的双十一即将来临,临时接到了一个任务:统计某品牌数据银行中自己品牌分别在2017和2018的10月20日至10月31日之间不同时间段的AIPL("认知"(Aware)."兴趣"(Interest)."购买"(Purchase)."忠诚"(Loyalty))流转率. 使用Fiddler获取到目标地址为: https://databank.yushanfang.com/api/ecapi?path=/databank/cr

随机推荐