Spark学习笔记(一)Spark初识【特性、组成、应用】

本文实例讲述了Spark基本特性、组成、应用。分享给大家供大家参考,具体如下:

一、官网介绍

1、什么是Spark

官网地址:http://spark.apache.org/

Apache Spark™是用于大规模数据处理的统一分析引擎。

从右侧最后一条新闻看,Spark也用于AI人工智能

spark是一个实现快速通用的集群计算平台。它是由加州大学伯克利分校AMP实验室 开发的通用内存并行计算框架,用来构建大型的、低延迟的数据分析应用程序。它扩展了广泛使用的MapReduce计算模型。高效的支撑更多计算模式,包括交互式查询和流处理。spark的一个主要特点是能够在内存中进行计算,及时依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效。

2、为什么要学Spark

中间结果输出:基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。出于任务管道承接的,考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果。

Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。

二、Spark的四大特性

1、高效性

运行速度提高100倍。

Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。

2、易用性

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。

3、通用性

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

4、兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

Mesos:Spark可以运行在Mesos里面(Mesos 类似于yarn的一个资源调度框架)

standalone:Spark自己可以给自己分配资源(master,worker)

YARN:Spark可以运行在yarn上面

Kubernetes:Spark接收 Kubernetes的资源调度

三、Spark的组成

Spark组成(BDAS):全称伯克利数据分析栈,通过大规模集成算法、机器、人之间展现大数据应用的一个平台。也是处理大数据、云计算、通信的技术解决方案。

它的主要组件有:

SparkCore:将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。

SparkSQL:Spark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持 多种数据源,包含Hive表,parquest以及JSON等内容。

SparkStreaming: 是Spark提供的实时数据进行流式计算的组件。

MLlib:提供常用机器学习算法的实现库。

GraphX:提供一个分布式图计算框架,能高效进行图计算。

BlinkDB:用于在海量数据上进行交互式SQL的近似查询引擎。

Tachyon:以内存为中心高容错的的分布式文件系统。

四、应用场景

Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等
腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。
优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

(0)

相关推荐

  • linux环境不使用hadoop安装单机版spark的方法

    大数据持续升温, 不熟悉几个大数据组件, 连装逼的口头禅都没有. 最起码, 你要会说个hadoop, hdfs, mapreduce, yarn, kafka, spark, zookeeper, neo4j吧, 这些都是装逼的必备技能. 关于spark的详细介绍, 网上一大堆, 搜搜便是, 下面, 我们来说单机版的spark的安装和简要使用. 0.  安装jdk,  由于我的机器上之前已经有了jdk, 所以这一步我可以省掉. jdk已经是很俗气的老生常谈了, 不多说, 用java/scala的

  • 使用docker快速搭建Spark集群的方法教程

    前言 Spark 是 Berkeley 开发的分布式计算的框架,相对于 Hadoop 来说,Spark 可以缓存中间结果到内存而提高某些需要迭代的计算场景的效率,目前收到广泛关注.下面来一起看看使用docker快速搭建Spark集群的方法教程. 适用人群 正在使用spark的开发者 正在学习docker或者spark的开发者 准备工作 安装docker (可选)下载java和spark with hadoop Spark集群 Spark运行时架构图 如上图: Spark集群由以下两个部分组成 集

  • Spark整合Mongodb的方法

    Spark介绍 按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎. 通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及用Mlib来执行机器学习等.Java,python,scala及R语言的支持也是其通用性的表现之一. 快速: 这个可能是Spark成功的最初原因之一,主要归功于其基于内存的运算方式.当需要处理的数据需要反复迭代时,Spark可以直接在内存中暂存数据,而无需像Map Reduce一样需要把数据写回磁盘

  • 初识Spark入门

    1. Spark简介 2009年,Spark诞生于伯克利大学的AMPLab实验室.最出Spark只是一个实验性的项目,代码量非常少,属于轻量级的框架. 2010年,伯克利大学正式开源了Spark项目. 2013年6月,Spark成为了Apache基金会下的项目,进入高速发展期.第三方开发者贡献了大量的代码,活跃度非常高 2014年2月,Spark以飞快的速度称为了Apache的顶级项目,同时大数据公司Cloudera宣称加大Spark框架的投入来取代MapReduce 2014年4月,大数据公司

  • java 中Spark中将对象序列化存储到hdfs

    java 中Spark中将对象序列化存储到hdfs 摘要: Spark应用中经常会遇到这样一个需求: 需要将JAVA对象序列化并存储到HDFS, 尤其是利用MLlib计算出来的一些模型, 存储到hdfs以便模型可以反复利用. 下面的例子演示了Spark环境下从Hbase读取数据, 生成一个word2vec模型, 存储到hdfs. 废话不多说, 直接贴代码了. spark1.4 + hbase0.98 import org.apache.spark.storage.StorageLevel imp

  • Python搭建Spark分布式集群环境

    前言 Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象.Spark 最大的特点就是快,可比 Hadoop MapReduce 的处理速度快 100 倍.本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装. 本教程采用Spark2.0以上版本(比如Spark2.0.2.Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2集群. 安装Hadoop并搭建好Hadoop集群环境 Spark分布式集群的安装

  • Spark学习笔记 (二)Spark2.3 HA集群的分布式安装图文详解

    本文实例讲述了Spark2.3 HA集群的分布式安装.分享给大家供大家参考,具体如下: 一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/apache/ 3.从清华的镜像站下载 https://mirrors.tuna.tsinghua.edu.cn/apache/ 二.安装基础 1.Java8安装成功 2.zookeeper安装成功 3.hadoo

  • 详解Java编写并运行spark应用程序的方法

    我们首先提出这样一个简单的需求: 现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况.这里我拿我网站的日志记录行示例,如下所示: 121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" &qu

  • centOS7下Spark安装配置教程详解

    环境说明: 操作系统: centos7 64位 3台         centos7-1 192.168.190.130 master         centos7-2 192.168.190.129 slave1         centos7-3 192.168.190.131 slave2 安装spark需要同时安装如下内容: jdk  scale 1.安装jdk,配置jdk环境变量 这里不讲如何安装配置jdk,自行百度. 2.安装scala 下载scala安装包,https://www

  • 浅谈七种常见的Hadoop和Spark项目案例

    有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式.具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目. 项目一:数据整合 称之为"企业级数据中心"或"数据湖",这个想法是你有不同的数据源,你想对它们进行数据分析.这类项目包括从所有来源获得

随机推荐