Python用requests-html爬取网页的实现

目录
  • 1. 开始
  • 2. 原理
  • 3. 元素定位
    • css 选择器
  • 4. CSS 简单规则
  • 5. Xpath简单规则
  • 6. 人性化操作
  • 7. 加载 js
  • 8. 总结

1. 开始

Python 中可以进行网页解析的库有很多,常见的有 BeautifulSoup 和 lxml 等。在网上玩爬虫的文章通常都是介绍 BeautifulSoup 这个库,我平常也是常用这个库,最近用 Xpath 用得比较多,使用 BeautifulSoup 就不大习惯,很久之前就知道 Reitz 大神出了一个叫 Requests-HTML 的库,一直没有兴趣看,这回可算歹着机会用一下了。

使用 pip install requests-html安装,上手和 Reitz 的其他库一样,轻松简单:

from requests_html import HTMLSession
session = HTMLSession()

r = session.get('https://www.python.org/jobs/')

这个库是在 requests 库上实现的,r 得到的结果是 Response 对象下面的一个子类,多个一个 html 的属性。所以 requests 库的响应对象可以进行什么操作,这个 r 也都可以。如果需要解析网页,直接获取响应对象的 html 属性:

r.html

2. 原理

不得不膜拜 Reitz 大神太会组装技术了。实际上 HTMLSession 是继承自 requests.Session 这个核心类,然后将 requests.Session 类里的 requests 方法改写,返回自己的一个 HTMLResponse 对象,这个类又是继承自 requests.Response,只是多加了一个 _from_response 的方法来构造实例:

class HTMLSession(requests.Session):
    # 重写 request 方法,返回 HTMLResponse 构造
    def request(self, *args, **kwargs) -> HTMLResponse:
        r = super(HTMLSession, self).request(*args, **kwargs)
        return HTMLResponse._from_response(r, self)
class HTMLResponse(requests.Response):
	# 构造器
    @classmethod
    def _from_response(cls, response, session: Union['HTMLSession', 'AsyncHTMLSession']):
        html_r = cls(session=session)
        html_r.__dict__.update(response.__dict__)
        return html_r

之后在 HTMLResponse 里定义属性方法 html,就可以通过 html 属性访问了,实现也就是组装 PyQuery 来干。核心的解析类也大多是使用 PyQuery 和 lxml 来做解析,简化了名称,挺讨巧的。

3. 元素定位

元素定位可以选择两种方式:

css 选择器

  • css选择器
  • xpath
# css 获取有多少个职位
jobs = r.html.find("h1.call-to-action")
# xpath 获取
jobs = r.html.xpath("//h1[@class='call-to-action']")

方法名非常简单,符合 Python 优雅的风格,这里不妨对这两种方式简单的说明:

4. CSS 简单规则

  • 标签名 h1
  • id 使用 #id 表示
  • class 使用 .class_name 表示
  • 谓语表示:h1[prop=value]

5. Xpath简单规则

  • 路径 // 或者 /
  • 标签名
  • 谓语 [@prop=value]
  • 轴定位 名称::元素名[谓语]

定位到元素以后势必要获取元素里面的内容和属性相关数据,获取文本:

jobs.text
jobs.full_text

获取元素的属性:

attrs = jobs.attrs
value = attrs.get("key")

还可以通过模式来匹配对应的内容:

## 找某些内容匹配
r.html.search("Python {}")
r.html.search_all()

这个功能看起来比较鸡肋,可以深入研究优化一下,说不定能在 github 上混个提交。

6. 人性化操作

除了一些基础操作,这个库还提供了一些人性化的操作。比如一键获取网页的所有超链接,这对于整站爬虫应该是个福音,URL 管理比较方便:

r.html.absolute_links
r.html.links

内容页面通常都是分页的,一次抓取不了太多,这个库可以获取分页信息:

print(r.html)
# 比较一下
for url in r.html:
    print(url)

结果如下:

# print(r.html)
<HTML url='https://www.python.org/jobs/'>
# for
<HTML url='https://www.python.org/jobs/'>
<HTML url='https://www.python.org/jobs/?page=2'>
<HTML url='https://www.python.org/jobs/?page=3'>
<HTML url='https://www.python.org/jobs/?page=4'>
<HTML url='https://www.python.org/jobs/?page=5'>

通过迭代器实现了智能发现分页,这个迭代器里面会用一个叫 _next 的方法,贴一段源码感受下:

def get_next():
	candidates = self.find('a', containing=next_symbol)

	for candidate in candidates:
		if candidate.attrs.get('href'):
			# Support 'next' rel (e.g. reddit).
			if 'next' in candidate.attrs.get('rel', []):
				return candidate.attrs['href']

通过查找 a 标签里面是否含有指定的文本来判断是不是有下一页,通常我们的下一页都会通过 下一页 或者 加载更多 来引导,他就是利用这个标志来进行判断。默认的以列表形式存在全局:['next', 'more', 'older']。我个人认为这种方式非常不灵活,几乎没有扩展性。感兴趣的可以往 github 上提交代码优化。

7. 加载 js

也许是考虑到了现在 js 的一些异步加载,这个库支持 js 运行时,官方说明如下:

Reloads the response in Chromium, and replaces HTML content
with an updated version, with JavaScript executed.

使用非常简单,直接调用以下方法:

r.html.render()

第一次使用的时候会下载 Chromium,不过国内你懂的,自己想办法去下吧,就不要等它自己下载了。render 函数可以使用 js 脚本来操作页面,滚动操作单独做了参数。这对于上拉加载等新式页面是非常友好的。

8. 总结

Reitz 大神设计出来的东西还是一如既往的简单好用,自己不多做,大多用别人的东西组装,简化 api。真是够人性。不过有的地方还是优化空间,希望有兴趣和精力的童鞋去 github 上关注一下这个项目。

到此这篇关于Python用requests-html爬取网页的实现的文章就介绍到这了,更多相关Python requests-html爬取内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python爬虫利器之requests库的用法(超全面的爬取网页案例)

    requests库 利用pip安装: pip install requests 基本请求 req = requests.get("https://www.baidu.com/") req = requests.post("https://www.baidu.com/") req = requests.put("https://www.baidu.com/") req = requests.delete("https://www.baid

  • python使用requests库爬取拉勾网招聘信息的实现

    按F12打开开发者工具抓包,可以定位到招聘信息的接口 在请求中可以获取到接口的url和formdata,表单中pn为请求的页数,kd为关请求职位的关键字 使用python构建post请求 data = { 'first': 'true', 'pn': '1', 'kd': 'python' } headers = { 'referer': 'https://www.lagou.com/jobs/list_python/p-city_0?&cl=false&fromSearch=true&a

  • Python用requests库爬取返回为空的解决办法

    首先介紹一下我們用360搜索派取城市排名前20. 我们爬取的网址:https://baike.so.com/doc/24368318-25185095.html 我们要爬取的内容: html字段: robots协议: 现在我们开始用python IDLE 爬取 import requests r = requests.get("https://baike.so.com/doc/24368318-25185095.html") r.status_code r.text 结果分析,我们可以

  • python requests爬取高德地图数据的实例

    如下所示: 1.pip install requests 2.pip install lxml 3.pip install xlsxwriter import requests #想要爬必须引 from lxml import html #这个是用于页面爬取 import xlsxwriter#操作Excel表格库 workbook = xlsxwriter.Workbook('E:/test/test.xlsx')# 新建的Excel表格文档路径 worksheet = workbook.ad

  • Python基于requests库爬取网站信息

    requests库是一个简介且简单的处理HTTP请求的第三方库 get()是获取网页最常用的方式,其基本使用方式如下 使用requests库获取HTML页面并将其转换成字符串后,需要进一步解析HTML页面格式,这里我们常用的就是beautifulsoup4库,用于解析和处理HTML和XML 下面这段代码便是爬取百度的信息并简单输出百度的界面信息 import requests from bs4 import BeautifulSoup r=requests.get('http://www.bai

  • python爬虫之利用Selenium+Requests爬取拉勾网

    一.前言 利用selenium+requests访问页面爬取拉勾网招聘信息 二.分析url 观察页面可知,页面数据属于动态加载 所以现在我们通过抓包工具,获取数据包 观察其url和参数 url="https://www.lagou.com/jobs/positionAjax.json?px=default&needAddtionalResult=false" 参数: city=%E5%8C%97%E4%BA%AC ==>城市 first=true ==>无用 pn=

  • 基于python requests selenium爬取excel vba过程解析

    目的:基于办公与互联网隔离,自带的office软件没有带本地帮助工具,因此在写vba程序时比较不方便(后来发现07有自带,心中吐血,瞎折腾些什么).所以想到通过爬虫在官方摘录下来作为参考. 目标网站:https://docs.microsoft.com/zh-cn/office/vba/api/overview/ 所使工具: python3.7,requests.selenium库 前端方面:使用了jquery.jstree(用于方便的制作无限层级菜单 设计思路: 1.分析目标页面,可分出两部分

  • Python使用requests xpath 并开启多线程爬取西刺代理ip实例

    我就废话不多说啦,大家还是直接看代码吧! import requests,random from lxml import etree import threading import time angents = [ "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compati

  • Python如何使用BeautifulSoup爬取网页信息

    这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 简单爬取网页信息的思路一般是 1.查看网页源码 2.抓取网页信息 3.解析网页内容 4.储存到文件 现在使用BeautifulSoup解析库来爬取刺猬实习Python岗位薪资情况 一.查看网页源码 这部分是我们需要的内容,对应的源码为: 分析源码,可以得知: 1.岗位信息列表在<section class="widg

  • Python如何利用正则表达式爬取网页信息及图片

    一.正则表达式是什么? 概念: 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑. 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. 个人理解: 简单来说就是使用正则表达式来写一个过滤器来过滤了掉杂乱的无用的信息(eg:网页源代码-)从中来获取自己想要的内容 二.实战项目 1.爬取内容 获取上海所有三甲医院的名称并保

  • Python使用requests模块爬取百度翻译

    requests模块: python中原生的一款基于网络请求的模块,功能非常强大,简单便捷,效率极高. 作用:模拟浏览器发请求. 提示:老版使用 urllib模块,但requests比urllib模块要简单好用,现在学习requests模块即可! requests模块编码流程 指定url 1.1 UA伪装 1.2 请求参数的处理 2.发起请求 3.获取响应数据 4.持久化存储 环境安装: pip install requests 案例一:破解百度翻译(post请求) 1.代码如下: #爬取百度翻

  • python3使用requests模块爬取页面内容的实战演练

    1.安装pip 我的个人桌面系统用的linuxmint,系统默认没有安装pip,考虑到后面安装requests模块使用pip,所以我这里第一步先安装pip. $ sudo apt install python-pip 安装成功,查看PIP版本: $ pip -V 2.安装requests模块 这里我是通过pip方式进行安装: $ pip install requests 运行import requests,如果没提示错误,那说明已经安装成功了! 检验是否安装成功 3.安装beautifulsou

  • 浅谈Python爬取网页的编码处理

    背景 中秋的时候,一个朋友给我发了一封邮件,说他在爬链家的时候,发现网页返回的代码都是乱码,让我帮他参谋参谋(中秋加班,真是敬业= =!),其实这个问题我很早就遇到过,之前在爬小说的时候稍微看了一下,不过没当回事,其实这个问题就是对编码的理解不到位导致的. 问题 很普通的一个爬虫代码,代码是这样的: # ecoding=utf-8 import re import requests import sys reload(sys) sys.setdefaultencoding('utf8') url

  • python爬虫爬取网页表格数据

    用python爬取网页表格数据,供大家参考,具体内容如下 from bs4 import BeautifulSoup import requests import csv import bs4 #检查url地址 def check_link(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: print('无法链接服务器!!!')

随机推荐