人工智能学习PyTorch教程之层和块

对于多层感知机而言,整个模型做的事情就是接收输入生成输出。但是并不是所有的多层神经网络都一样,所以为了实现复杂的神经网络就需要神经网络块,块可以描述单个层、由多个层组成的组件或整个模型本身。使用块进行抽象的一个好处是可以将一些块组合成更大的组件。

从编程的角度来看,块由类(class)表示。它的任何子类都必须定义一个将其输入转换为输出的正向传播函数,并且必须存储任何必需的参数。注意,有些块不需要任何参数。最后,为了计算梯度,块必须具有反向传播函数。幸运的是,在定义我们自己的块时,由于autograd 中引入)提供了一些后端实现,我们只需要考虑正向传播函数和必需的参数。

这一部分我们就要自定义自己的层和块。

先用实现一个简单的多层感知机:

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

这个多层感知机包含一个具有256个单元和ReLU激活函数的全连接的隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接的输出层。

通过实例化nn.Sequential来构建我们的模型,层的执行顺序就是传入参数的顺序。

  • nn.Sequential定义了一种特殊的Module,即在PyTorch中表示一个块的类。它维护了一个由Module组成的有序列表(Linear类是Module的子类)。
  • 正向传播(forward)函数:将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
  • 通过net(X)调用我们的模型来获得模型的输出。是net.__call__(X)的简写。(这一句先不管他有什么,继续往下看。)

我们也可以自己手写一个多层感知机:

class MLP(nn.Module):
    def __init__(self):
        # 调用`MLP`的父类的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数`params`(稍后将介绍)
        super().__init__()

        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的正向传播,即如何根据输入`X`返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

net = MLP()
net(X)

通过super().__init__()调用父类的__init__函数,省去了重复编写适用于大多数块的模版代码的痛苦。

实例化两个全连接层,分别为self.hidden和self.out。

除非我们实现一个新的运算符,否则我们不用担心反向传播函数或参数初始化,系统将自动生成这些。

前边说调用net() 就相当于调用net.__call__(X),因为我们在自己的MLP中写了forward,但是我们没有调用,只使用net() 他就自动执行forward了。就是因为会自动调用.__call__函数使forward执行。

说完后两条说第一条:

有序是怎么实现的,构建构一个简化的MySequential:

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for block in args:
            # 这里,`block`是`Module`子类的一个实例。我们把它保存在'Module'类的成员变量
            # `_modules` 中。`block`的类型是OrderedDict。
            self._modules[block] = block

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

MySequential类提供了与默认Sequential类相同的功能。

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

用MySequential类实现的多层感知机和Sequential类实现的一样。

注意这里只是写出了其执行顺序,是简化版的Sequential类!

到此这篇关于人工智能学习PyTorch教程之层和块的文章就介绍到这了,更多相关PyTorch 层和块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • pytorch神经网络从零开始实现多层感知机

    目录 初始化模型参数 激活函数 模型 损失函数 训练 我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机.为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集. import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnis

  • pyTorch深度学习多层感知机的实现

    目录 激活函数 多层感知机的PyTorch实现 激活函数 前两节实现的传送门 pyTorch深度学习softmax实现解析 pyTorch深入学习梯度和Linear Regression实现析 前两节实现的linear model 和 softmax model 是单层神经网络,只包含一个输入层和一个输出层,因为输入层不对数据进行transformation,所以只算一层输出层. 多层感知机(mutilayer preceptron)加入了隐藏层,将神经网络的层级加深,因为线性层的串联结果还是线

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

  • 人工智能学习PyTorch教程之层和块

    对于多层感知机而言,整个模型做的事情就是接收输入生成输出.但是并不是所有的多层神经网络都一样,所以为了实现复杂的神经网络就需要神经网络块,块可以描述单个层.由多个层组成的组件或整个模型本身.使用块进行抽象的一个好处是可以将一些块组合成更大的组件. 从编程的角度来看,块由类(class)表示.它的任何子类都必须定义一个将其输入转换为输出的正向传播函数,并且必须存储任何必需的参数.注意,有些块不需要任何参数.最后,为了计算梯度,块必须具有反向传播函数.幸运的是,在定义我们自己的块时,由于autogr

  • 人工智能学习Pytorch教程Tensor基本操作示例详解

    目录 一.tensor的创建 1.使用tensor 2.使用Tensor 3.随机初始化 4.其他数据生成 ①torch.full ②torch.arange ③linspace和logspace ④ones, zeros, eye ⑤torch.randperm 二.tensor的索引与切片 1.索引与切片使用方法 ①index_select ②... ③mask 三.tensor维度的变换 1.维度变换 ①torch.view ②squeeze/unsqueeze ③expand,repea

  • 人工智能学习Pytorch进阶操作教程

    目录 一.合并与分割 1.cat拼接 2.stack堆叠 3.拆分 ①Split按长度拆分 ②Chunk按数量拆分 二.基本运算 1.加减乘除 2.矩阵相乘 3.次方计算 4. clamp 三.属性统计 1.求范数 2.求极值.求和.累乘 3. dim和keepdim 4.topk和kthvalue 5.比较运算 6.高阶操作 ①where ②gather 一.合并与分割 1.cat拼接 直接按照指定的dim维度进行合并,要求除了所需要合并的维度之外,其他的维度需要是一样的 2.stack堆叠

  • 人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析

    目录 1.CNN卷积层 2. 池化层 3.数据批量标准化 4.nn.Module类 ①各类函数 ②容器功能 ③参数管理 ④调用GPU ⑤存储和加载 ⑥训练.测试状态切换 ⑦ 创建自己的层 5.数据增强 1.CNN卷积层 通过nn.Conv2d可以设置卷积层,当然也有1d和3d. 卷积层设置完毕,将设置好的输入数据,传给layer(),即可完成一次前向运算.也可以传给layer.forward,但不推荐. 2. 池化层 池化层的核大小一般是2*2,有2种方式: maxpooling:选择数据中最大

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式

  • 人工智能学习pyTorch的ResNet残差模块示例详解

    目录 1.定义ResNet残差模块 ①各层的定义 ②前向传播 2.ResNet18的实现 ①各层的定义 ②前向传播 3.测试ResNet18 1.定义ResNet残差模块 一个block中,有两个卷积层,之后的输出还要和输入进行相加.因此一个block的前向流程如下: 输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out 中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些. ①各层的定义 ②前向传播 在前向传播中输入x,过

  • 人工智能学习Pytorch张量数据类型示例详解

    目录 1.python 和 pytorch的数据类型区别 2.张量 ①一维张量 ②二维张量 ③3维张量 ④4维张量 1.python 和 pytorch的数据类型区别 在PyTorch中无法展示字符串,因此表达字符串,需要将其转换成编码的类型,比如one_hot,word2vec等. 2.张量 在python中,会有标量,向量,矩阵等的区分.但在PyTorch中,这些统称为张量tensor,只是维度不同而已. 标量就是0维张量,只有一个数字,没有维度. 向量就是1维张量,是有顺序的数字,但没有"

  • Python人工智能学习PyTorch实现WGAN示例详解

    目录 1.GAN简述 2.生成器模块 3.判别器模块 4.数据生成模块 5.判别器训练 6.生成器训练 7.结果可视化 1.GAN简述 在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断样本是真还是假.但由于在GAN中,使用的JS散度去计算损失值,很容易导致梯度弥散的情况,从而无法进行梯度下降更新参数,于是在WGAN中,引入了Wasserstein Distance,使得训练变得稳定.本文中我们以服从高斯分布的数据作为样本. 2.生成器模块 这里从2维数据,最终生成2

  • 人工智能学习Pytorch数据集分割及动量示例详解

    目录 1.数据集分割 2.正则化 3.动量和学习率衰减 1.数据集分割 通过datasets可以直接分别获取训练集和测试集. 通常我们会将训练集进行分割,通过torch.utils.data.random_split方法. 所有的数据都需要通过torch.util.data.DataLoader进行加载,才可以得到可以使用的数据集. 具体代码如下: 2. 2.正则化 PyTorch中的正则化和机器学习中的一样,不过设置方式不一样. 直接在优化器中,设置weight_decay即可.优化器中,默认

随机推荐