pytorch教程resnet.py的实现文件源码分析

目录
  • 调用pytorch内置的模型的方法
  • 解读模型源码Resnet.py
    • 包含的库文件
    • 该库定义了6种Resnet的网络结构
    • 每种网络都有训练好的可以直接用的.pth参数文件
    • Resnet中大多使用3*3的卷积定义如下
    • 如何定义不同大小的Resnet网络
      • 定义Resnet18
      • 定义Resnet34
    • Resnet类
    • 网络的forward过程
    • 残差Block连接是如何实现的

调用pytorch内置的模型的方法

import torchvision
model = torchvision.models.resnet50(pretrained=True)

这样就导入了resnet50的预训练模型了。如果只需要网络结构,不需要用预训练模型的参数来初始化

那么就是:

model = torchvision.models.resnet50(pretrained=False)

如果要导入densenet模型也是同样的道理

比如导入densenet169,且不需要是预训练的模型:

model = torchvision.models.densenet169(pretrained=False)

由于pretrained参数默认是False,所以等价于:

model = torchvision.models.densenet169()

不过为了代码清晰,最好还是加上参数赋值。

解读模型源码Resnet.py

包含的库文件

import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo

该库定义了6种Resnet的网络结构

包括

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50',  'resnet101',  'resnet152']

每种网络都有训练好的可以直接用的.pth参数文件

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50',  'resnet101',  'resnet152']

Resnet中大多使用3*3的卷积定义如下

def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)

该函数继承自nn网络中的2维卷积,这样做主要是为了方便,少写参数参数由原来的6个变成了3个

输出图与输入图长宽保持一致

如何定义不同大小的Resnet网络

Resnet类是一个基类,
所谓的"Resnet18", ‘resnet34', ‘resnet50', ‘resnet101', 'resnet152'只是Resnet类初始化的时候使用了不同的参数,理论上我们可以根据Resnet类定义任意大小的Resnet网络
下面先看看这些不同大小的Resnet网络是如何定义的

定义Resnet18

def resnet18(pretrained=False, **kwargs):
"""
Constructs a ResNet-18 model.
Args:
pretrained (bool):If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
    model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
 return model

定义Resnet34

def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:        pretrained (bool): If True, returns a model pre-trained on ImageNet    """
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
    model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
 return model

我们发现Resnet18和Resnet34的定义几乎是一样的,下面我们把Resnet18,Resnet34,Resnet50,Resnet101,Resnet152,不一样的部分写在一块进行对比

model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)    #Resnet18
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)    #Resnet34
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)    #Eesnt50
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)  #Resnet101
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)  #Resnet152

代码看起来非常的简洁工整,

其他resnet18、resnet101等函数和resnet18基本类似,差别主要是在:

1、构建网络结构的时候block的参数不一样,比如resnet18中是[2, 2, 2, 2],resnet101中是[3, 4, 23, 3]。

2、调用的block类不一样,比如在resnet50、resnet101、resnet152中调用的是Bottleneck类,而在resnet18和resnet34中调用的是BasicBlock类,这两个类的区别主要是在residual结果中卷积层的数量不同,这个是和网络结构相关的,后面会详细介绍。

3、如果下载预训练模型的话,model_urls字典的键不一样,对应不同的预训练模型。因此接下来分别看看如何构建网络结构和如何导入预训练模型。

Resnet类

构建ResNet网络是通过ResNet这个类进行的。ResNet类是继承PyTorch中网络的基类:torch.nn.Module。

构建Resnet类主要在于重写 init() forward() 方法。

我们构建的所有网络比如:VGGAlexnet等都需要重写这两个方法,这两个方法很重要

看起来Resne类是整个文档的核心

下面我们就要研究一下Resnet基类是如何实现的

Resnet类采用了pytorch定义网络模型的标准结构,包含

iinit()方法: 定义了网络的各个层
forward()方法: 定义了前向传播过程

这两个方法的用法,这个可以查看pytorch的官方文档就可以明白

在Resnet类中,还包含一个自定义的方法make_layer()方法

是用来构建ResNet网络中的4个blocks

_make_layer方法的第一个输入block是BottleneckBasicBlock

第二个输入是该blocks的输出channel

第三个输入是每个blocks中包含多少个residual子结构,因此layers这个列表就是前面resnet50的[3, 4, 6, 3]。

_make_layer方法中比较重要的两行代码是:

layers.append(block(self.inplanes, planes, stride, downsample))

该部分是将每个blocks的第一个residual结构保存在layers列表中。

 for i in range(1, blocks): layers.append(block(self.inplanes, planes))

该部分是将每个blocks的剩下residual 结构保存在layers列表中,这样就完成了一个blocks的构造。这两行代码中都是通过Bottleneck这个类来完成每个residual的构建

接下来介绍Bottleneck类

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

下面我们分别看看这两个过程:

网络的forward过程

 def forward(self, x):                                #x代表输入
        x = self.conv1(x)                             #进过卷积层1
        x = self.bn1(x)                                #bn1层
        x = self.relu(x)                                #relu激活
        x = self.maxpool(x)                         #最大池化
        x = self.layer1(x)                            #卷积块1
        x = self.layer2(x)                           #卷积块2
        x = self.layer3(x)                          #卷积块3
        x = self.layer4(x)                          #卷积块4
        x = self.avgpool(x)                     #平均池化
        x = x.view(x.size(0), -1)               #二维变成变成一维向量
        x = self.fc(x)                             #全连接层
        return x

里面的大部分我们都可以理解,只有layer1-layer4是Resnet网络自己定义的,
它也是Resnet残差连接的精髓所在,我们来分析一下layer层是怎么实现的

残差Block连接是如何实现的

从前面的ResNet类可以看出,在构造ResNet网络的时候,最重要的是 BasicBlock这个类,因为ResNet是由residual结构组成的,而 BasicBlock类就是完成residual结构的构建。同样 BasicBlock还是继承了torch.nn.Module类,且重写了__init__()和forward()方法。从forward方法可以看出,bottleneck就是我们熟悉的3个主要的卷积层、BN层和激活层,最后的out += residual就是element-wise add的操作。

这部分在 BasicBlock类中实现,我们看看这层是如何前向传播的

def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

我画个流程图来表示一下

画的比较丑,不过基本意思在里面了,

根据论文的描述,x是否需要下采样由x与out是否大小一样决定,

假如进过conv2和bn2后的结果我们称之为 P

假设x的大小为wHchannel1

如果P的大小也是wHchannel1

则无需下采样
out = relu(P + X)
out的大小为W * H *(channel1+channel2),

如果P的大小是W/2 * H/2 * channel

则X需要下采样后才能与P相加,
out = relu(P+ X下采样)
out的大小为W/2 * H/2 * (channel1+channel2)

BasicBlock类和Bottleneck类类似,前者主要是用来构建ResNet18和ResNet34网络,因为这两个网络的residual结构只包含两个卷积层,没有Bottleneck类中的bottleneck概念。因此在该类中,第一个卷积层采用的是kernel_size=3的卷积,就是我们之前提到的conv3x3函数。

下面是BasicBlock类的完整代码

class BasicBlock(nn.Module):
    expansion = 1
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

以上就是pytorch教程resnet.py的实现文件源码解读的详细内容,更多关于pytorch源码解读的资料请关注我们其它相关文章!

(0)

相关推荐

  • 关于PyTorch源码解读之torchvision.models

    PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets.torchvision.models.torchvision.transforms. 这3个子包的具体介绍可以参考官网: http://pytorch.org/docs/master/torchvision/index.html. 具体代码可以参考github: https://github.com/pytorch/vision/tree/master/

  • PyTorch数据读取的实现示例

    前言 PyTorch作为一款深度学习框架,已经帮助我们实现了很多很多的功能了,包括数据的读取和转换了,那么这一章节就介绍一下PyTorch内置的数据读取模块吧 模块介绍 pandas 用于方便操作含有字符串的表文件,如csv zipfile python内置的文件解压包 cv2 用于图片处理的模块,读入的图片模块为BGR,N H W C torchvision.transforms 用于图片的操作库,比如随机裁剪.缩放.模糊等等,可用于数据的增广,但也不仅限于内置的图片操作,也可以自行进行图片数

  • PyTorch实现ResNet50、ResNet101和ResNet152示例

    PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks import torch import torch.nn as nn import torchvision import numpy as np print("PyTorch Version: ",torch.__version__) print("Torchvision Version: ",torchvision.__version__) _

  • 关于ResNeXt网络的pytorch实现

    此处需要pip install pretrainedmodels """ Finetuning Torchvision Models """ from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import numpy as np im

  • pytorch实现ResNet结构的实例代码

    1.ResNet的创新 现在重新稍微系统的介绍一下ResNet网络结构. ResNet结构首先通过一个卷积层然后有一个池化层,然后通过一系列的残差结构,最后再通过一个平均池化下采样操作,以及一个全连接层的得到了一个输出.ResNet网络可以达到很深的层数的原因就是不断的堆叠残差结构而来的. 1)亮点 网络中的亮点 : 超深的网络结构( 突破1000 层) 提出residual 模块 使用Batch Normalization 加速训练( 丢弃dropout) 但是,一般来说,并不是一直的加深神经

  • pytorch教程resnet.py的实现文件源码分析

    目录 调用pytorch内置的模型的方法 解读模型源码Resnet.py 包含的库文件 该库定义了6种Resnet的网络结构 每种网络都有训练好的可以直接用的.pth参数文件 Resnet中大多使用3*3的卷积定义如下 如何定义不同大小的Resnet网络 定义Resnet18 定义Resnet34 Resnet类 网络的forward过程 残差Block连接是如何实现的 调用pytorch内置的模型的方法 import torchvision model = torchvision.models

  • ZooKeeper框架教程Curator分布式锁实现及源码分析

    目录 如何使用InterProcessMutex 实现思路 代码实现概述 InterProcessMutex源码分析 实现接口 属性 构造方法 方法 获得锁 释放锁 LockInternals源码分析 获取锁 释放锁 总结 ZooKeeper入门教程一简介与核心概念 ZooKeeper入门教程二在单机和集群环境下的安装搭建及使用 ZooKeeper入门教程三分布式锁实现及完整运行源码 上一篇文章中,我们使用zookeeper的java api实现了分布式排他锁. Curator中有着更为标准.规

  • Pytorch搭建YoloV4目标检测平台实现源码

    目录 什么是YOLOV4 YOLOV4结构解析 1.主干特征提取网络Backbone 2.特征金字塔 3.YoloHead利用获得到的特征进行预测 4.预测结果的解码 5.在原图上进行绘制 YOLOV4的训练 1.YOLOV4的改进训练技巧 a).Mosaic数据增强 b).Label Smoothing平滑 c).CIOU d).学习率余弦退火衰减 2.loss组成 a).计算loss所需参数 b).y_pre是什么 c).y_true是什么. d).loss的计算过程 训练自己的YoloV4

  • Pytorch搭建yolo3目标检测平台实现源码

    目录 yolo3实现思路 一.预测部分 1.主题网络darknet53介绍 2.从特征获取预测结果 3.预测结果的解码 4.在原图上进行绘制 二.训练部分 1.计算loss所需参数 2.pred是什么 3.target是什么. 4.loss的计算过程 训练自己的YoloV3模型 一.数据集的准备 二.数据集的处理 三.开始网络训练 四.训练结果预测 yolo3实现思路 一起来看看yolo3的Pytorch实现吧,顺便训练一下自己的数据. 源码下载 一.预测部分 1.主题网络darknet53介绍

  • Hadoop源码分析六启动文件namenode原理详解

    1. namenode启动 在本系列文章三中分析了hadoop的启动文件,其中提到了namenode启动的时候调用的类为 org.apache.hadoop.hdfs.server.namenode.NameNode 其main方法的内容如下: public static void main(String argv[]) throws Exception { if (DFSUtil.parseHelpArgument(argv, NameNode.USAGE, System.out, true)

  • SpringBoot源码分析之bootstrap.properties文件加载的原理

    目录 1.bootstrap的使用 2.bootstrap加载原理分析 2.1 BootstrapApplicationListener 2.2 启动流程梳理 2.3 bootstrap.properties的加载原理   对于SpringBoot中的属性文件相信大家在工作中用的是比较多的,对于application.properties和application.yml文件应该非常熟悉,但是对于bootstrap.properties文件和bootstrap.yml这个两个文件用的估计就比较少了

  • go 压缩解压zip文件源码示例

    目录 压缩zip 解压zip 压缩zip func Zip(dest string, paths ...string) error { zfile, err := os.Create(dest) if err != nil { return err } defer zfile.Close() zipWriter := zip.NewWriter(zfile) defer zipWriter.Close() for _, src := range paths { // remove the tra

  • SpringBoot拦截器与文件上传实现方法与源码分析

    目录 一.拦截器 1.创建一个拦截器 2.配置拦截器 二.拦截器原理 三.文件上传 四.文件上传流程 一.拦截器 拦截器我们之前在springmvc已经做过介绍了 大家可以看下[SpringMVC]自定义拦截器和过滤器 为什么在这里还要再讲一遍呢? 因为spring boot里面对它做了简化,大大节省了我们配置那些烦人的xml文件的时间 接下来,我们就通过一个小例子来了解一下拦截器在spring boot中的使用 1.创建一个拦截器 首先我们创建一个拦截器,实现HandlerIntercepto

  • redis源码分析教程之压缩链表ziplist详解

    前言 压缩列表(ziplist)是由一系列特殊编码的内存块构成的列表,它对于Redis的数据存储优化有着非常重要的作用.这篇文章总结一下redis中使用非常多的一个数据结构压缩链表ziplist.该数据结构在redis中说是无处不在也毫不过分,除了链表以外,很多其他数据结构也是用它进行过渡的,比如前面文章提到的SortedSet.下面话不多说了,来一起看看详细的介绍吧. 一.压缩链表ziplist数据结构简介 首先从整体上看下ziplist的结构,如下图: 压缩链表ziplist结构图 可以看出

  • Django模型验证器介绍与源码分析

    前言 在Django的模型字段参数中,有一个参数叫做validators,这个参数是用来指定当前字段需要使用的验证器,也就是对字段数据的合法性进行验证,比如大小.类型等. Django的验证器可以分为模型相关的验证器和表单相关的验证器,它们基本类似,但在使用上有区别. 本文讨论的是模型相关的验证器. 一.自定义验证器 一个验证器其实就是一个可调用的对象(函数或类),接收一个初始输入值作为参数,对这个值进行一系列逻辑判断,如果不满足某些规则或者条件,则表示验证不通过,抛出一个ValidationE

随机推荐