利用Python字符画生成甜心教主

目录
  • 工具准备
  • 项目效果展示
  • 项目思路解析
    • 1.视频拆分成视频
    • 2.将图片转换字符画
    • 3.合成视频
  • 简易源码分享

字符画:字符画是一系列字符的组合,我们可以把字符看作是比较大块的像素,一个字符能表现一种颜色,字符的种类越多,可以表现的颜色也越多,图片也会更有层次感。 如果我们想要手工绘制出字符画,首先要有扎实的美术基础,其次还要花费大量的时间和精力。但是我们可以使用Python,只需要几行代码,就能够将一张图片轻而易举地转化为一个字符画。

工具准备

开发工具:pycharm

开发环境:python3.7, Windows10

使用工具包:PIL, cv2, numpy

项目效果展示

项目思路解析

首先我们先将这个项目思路进行明确定位,把我们甜心教主的视频转换成字符画的视频,首先自备一段教主的视频,在将视频进行拆分,拆分成一张张单独的图片,因为我们转成字符画其实本质上就是转化成图片数据

然后在对每一张图片进行灰度处理,我们做个相对来说简单一点的,灰度数据的话只有黑白,颜色更好把控,把图片数据转化成一个数组,通过k聚类算法把图像进行聚类划分,在将划分的图片数组根据亮度情况进行替换,根据亮度情况亮一点的用数字,稍稍暗一点的用1,白的用空白,将视频里的图片数据进行全部替换,在将替换好的图片组合成一个视频

1.视频拆分成视频

首先使用cv2.VideoCapture进行视频进行抽帧,将抽帧好的图片使用read方式进行读取,把读取好的数据保存在文件夹里,使用数字来保存图片名,也方便我们在之后进行提取图片数据进行使用

# 将视频转换为图片 并进行计数,返回总共生成了多少张图片!
def video_to_pic(vp):
    # vp = cv2.VideoCapture(video_path)
    number = 0
    if vp.isOpened():
        r, frame = vp.read()
        if not os.path.exists('cache_pic'):
            os.mkdir('cache_pic')
        os.chdir('cache_pic')
    else:
        r = False
    while r:
        number += 1
        cv2.imwrite(str(number) + '.jpg', frame)
        r, frame = vp.read()
    print('\n由视频一共生成了{}张图片!'.format(number))
    os.chdir("..")
    return number

2.将图片转换字符画

循环取出文件夹里面所有的图片数据进行转换,首先通过cv2进行图片读取,获取到他的图片数据通道,获取到图片数据的3通道rgb的数据信息,在将数据进行灰度处理,我们需要用他的颜色用来区分他的数据样式,所以只能灰度来实现,在使用numpy进行数据转换,将获取到的矩阵数据进行降维,转换成一个类似列表的数据信息,使用kmeans算法对图像数据进行分类,设置他的矩阵中心数,最大迭代数,以及试错等级,k聚类算法可以自行了解,会给我们返回labels(类别)、centroids(矩心) compactness(密度值),将矩心进行数据转换成整数,我们可以更好的替换符号,对矩心进行排序,矩心大的说明颜色越暗,矩心小的越淡,在根据亮度数据将数据进行替换成一个新的画布,将我们的符号替换到画布上去,到这里我们就能吧单独的图片替换成字符画了

def img2strimg(frame, K=3):
    # 读取矩阵的长度 有时返回两个值,有时三个值
    height, width, *_ = frame.shape
    # print(frame.shape)
    # 颜色空间转化 图片对象, 灰度处理
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # print(frame_gray)
    # 转换数据类型,将数据降维
    frame_array = np.float32(frame_gray.reshape(-1))
    # print(frame_array)
    # 得到labels(类别)、centroids(矩心) compactness(密度值)。
    # 如第一行6个像素labels=[0,2,2,1,2,0],则意味着6个像素分别对应着 第1个矩心、第3个矩心、第3、2、3、1个矩心。
    compactness, labels, centroids = cv2.kmeans(frame_array, K, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
    print(labels)
    centroids = np.uint8(centroids)  # 转换成整形
    # labels的数个矩心以随机顺序排列,所以需要简单处理矩心.
    # 返回一个折叠成一维的数组
    centroids = centroids.flatten()
    # 排序
    centroids_sorted = sorted(centroids)
    # 获得不同centroids的明暗程度,0最暗
    centroids_index = np.array([centroids_sorted.index(value) for value in centroids])
    # 亮度设置
    bright = [abs((3 * i - 2 * K) / (3 * K)) for i in range(1, 1 + K)]
    bright_bound = bright.index(np.min(bright))
    # 背景阴影设置
    shadow = [abs((3 * i - K) / (3 * K)) for i in range(1, 1 + K)]
    shadow_bound = shadow.index(np.min(shadow))
    # 返回一个折叠成一维的数组
    labels = labels.flatten()
    print(labels)
    # 将labels转变为实际的明暗程度列表,0最暗。
    labels = centroids_index[labels]
    print(labels)
    # 列表解析,每2*2个像素挑选出一个,组成(height*width*灰)数组。
    labels_picked = [labels[rows * width:(rows + 1) * width:2] for rows in range(0, height, 2)]
    canvas = np.zeros((3 * height, 3 * width, 3), np.uint8)
    canvas.fill(255)  # 创建长宽为原图三倍的白色画布。

    # 因为 字体大小为0.45时,每个数字占6*6个像素,而白底画布为原图三倍
    # 所以 需要原图中每2*2个像素中挑取一个,在白底画布中由6*6像素大小的数字表示这个像素信息。
    y = 0
    for rows in labels_picked:
        x = 0
        for cols in rows:
            if cols <= shadow_bound:
                # 添加文字  图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细
                cv2.putText(canvas, str(random.randint(2, 9)), (x, y), cv2.FONT_HERSHEY_PLAIN, 0.45, 0.1)
            elif cols <= bright_bound:
                cv2.putText(canvas, "-", (x, y),cv2.FONT_HERSHEY_PLAIN, 0.4, 0, 1)
            x += 6
        y += 6

    return canvas

3.合成视频

将全部的图片数据在进行合成一个新的视频,视频数据尽量不要太大,帧数越细的话,生成的视频越大,可能好几个G

def jpg_to_video(char_image_path, FPS):
    video_fourcc = cv2.VideoWriter_fourcc(*"MP42")  # 设置视频编码器,这里使用使用MP42编码器,可以生成更小的视频文件
    char_img_path_list = [char_image_path + r'/{}.jpg'.format(i) for i in range(1, number + 1)]  # 生成目标字符图片文件的路径列表
    char_img_test = Image.open(char_img_path_list[1]).size  # 获取图片的分辨率
    if not os.path.exists('video'):
        os.mkdir('video')
    video_writter = cv2.VideoWriter('video/new_char_video.avi', video_fourcc, FPS, char_img_test)
    sum = len(char_img_path_list)
    count = 0
    for image_path in char_img_path_list:
        img = cv2.imread(image_path)
        video_writter.write(img)
        end_str = '100%'
        count = count + 1
        process_bar(count / sum, start_str='', end_str=end_str, total_length=15)

    video_writter.release()
    print('\n')
    print('=======================')
    print('The video is finished!')
    print('=======================')

简易源码分享

# from platypus import
import os
from PIL import Image, ImageFont, ImageDraw
import cv2
import random
import numpy as np
import threading

# 将视频转换为图片 并进行计数,返回总共生成了多少张图片!
def video_to_pic(vp):
    # vp = cv2.VideoCapture(video_path)
    number = 0
    if vp.isOpened():
        r, frame = vp.read()
        if not os.path.exists('cache_pic'):
            os.mkdir('cache_pic')
        os.chdir('cache_pic')
    else:
        r = False
    while r:
        number += 1
        cv2.imwrite(str(number) + '.jpg', frame)
        r, frame = vp.read()
    print('\n由视频一共生成了{}张图片!'.format(number))
    os.chdir("..")
    return number

def star_to_char(number, save_pic_path):
    if not os.path.exists('cache_char'):
        os.mkdir('cache_char')
    img_path_list = [save_pic_path + r'/{}.jpg'.format(i) for i in range(1, number + 1)]  # 生成目标图片文件的路径列表
    task = 0
    for image_path in img_path_list:
        img_width, img_height = Image.open(image_path).size  # 获取图片的分辨率
        task += 1
        # img_to_char(image_path, img_width, img_height, task)
        print('{}/{} is finished.'.format(task, number))
    print('=======================')
    print('All image was finished!')
    print('=======================')
    return 0

def img2strimg(frame, K=3):
    # 读取矩阵的长度 有时返回两个值,有时三个值
    height, width, *_ = frame.shape
    # print(frame.shape)
    # 颜色空间转化 图片对象, 灰度处理
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # print(frame_gray)
    # 转换数据类型,将数据降维
    frame_array = np.float32(frame_gray.reshape(-1))
    # print(frame_array)
    # 得到labels(类别)、centroids(矩心) compactness(密度值)。
    # 如第一行6个像素labels=[0,2,2,1,2,0],则意味着6个像素分别对应着 第1个矩心、第3个矩心、第3、2、3、1个矩心。
    compactness, labels, centroids = cv2.kmeans(frame_array, K, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
    print(labels)
    centroids = np.uint8(centroids)  # 转换成整形
    # labels的数个矩心以随机顺序排列,所以需要简单处理矩心.
    # 返回一个折叠成一维的数组
    centroids = centroids.flatten()
    # 排序
    centroids_sorted = sorted(centroids)
    # 获得不同centroids的明暗程度,0最暗
    centroids_index = np.array([centroids_sorted.index(value) for value in centroids])
    # 亮度设置
    bright = [abs((3 * i - 2 * K) / (3 * K)) for i in range(1, 1 + K)]
    bright_bound = bright.index(np.min(bright))
    # 背景阴影设置
    shadow = [abs((3 * i - K) / (3 * K)) for i in range(1, 1 + K)]
    shadow_bound = shadow.index(np.min(shadow))
    # 返回一个折叠成一维的数组
    labels = labels.flatten()
    print(labels)
    # 将labels转变为实际的明暗程度列表,0最暗。
    labels = centroids_index[labels]
    print(labels)
    # 列表解析,每2*2个像素挑选出一个,组成(height*width*灰)数组。
    labels_picked = [labels[rows * width:(rows + 1) * width:2] for rows in range(0, height, 2)]
    canvas = np.zeros((3 * height, 3 * width, 3), np.uint8)
    canvas.fill(255)  # 创建长宽为原图三倍的白色画布。

    # 因为 字体大小为0.45时,每个数字占6*6个像素,而白底画布为原图三倍
    # 所以 需要原图中每2*2个像素中挑取一个,在白底画布中由6*6像素大小的数字表示这个像素信息。
    y = 0
    for rows in labels_picked:
        x = 0
        for cols in rows:
            if cols <= shadow_bound:
                # 添加文字  图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细
                cv2.putText(canvas, str(random.randint(2, 9)), (x, y), cv2.FONT_HERSHEY_PLAIN, 0.45, 0.1)
            elif cols <= bright_bound:
                cv2.putText(canvas, "-", (x, y),cv2.FONT_HERSHEY_PLAIN, 0.4, 0, 1)
            x += 6
        y += 6

    return canvas

def jpg_to_video(char_image_path, FPS):
    video_fourcc = cv2.VideoWriter_fourcc(*"MP42")  # 设置视频编码器,这里使用使用MP42编码器,可以生成更小的视频文件
    char_img_path_list = [char_image_path + r'/{}.jpg'.format(i) for i in range(1, number + 1)]  # 生成目标字符图片文件的路径列表
    char_img_test = Image.open(char_img_path_list[1]).size  # 获取图片的分辨率
    if not os.path.exists('video'):
        os.mkdir('video')
    video_writter = cv2.VideoWriter('video/new_char_video.avi', video_fourcc, FPS, char_img_test)
    sum = len(char_img_path_list)
    count = 0

if __name__ == '__main__':
    video_path = '王心凌.mp4'
    save_pic_path = 'cache_pic'
    save_charpic_path = 'cache_char'
    vp = cv2.VideoCapture(video_path)
    number = video_to_pic(vp)
    for i in range(1, number):
        fp = r"cache_pic/{}.jpg".format(i)
        img = cv2.imread(fp)  # 返回图片数据 (高度, 宽度,通道数)
        print(img)
        # 若字符画结果不好,可以尝试更改K为3。若依然无法很好地表现原图,请换图尝试。 -_-||
        str_img = img2strimg(img)
        cv2.imwrite("cache_char/{}.jpg".format(i), str_img)
        # number = 1692
        # print(number)
        FPS = vp.get(cv2.CAP_PROP_FPS)
        star_to_char(number, save_pic_path)
    jpg_to_video(save_charpic_path, FPS)

到此这篇关于利用Python字符画生成甜心教主的文章就介绍到这了,更多相关Python字符画内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 从零学python系列之教你如何根据图片生成字符画

    说下思路吧: 原图->灰度->根据像素亮度-映射到指定的字符序列中->输出.字符越多,字符变化稠密.效果会更好.如果根据灰度图的像素亮度范围制作字符画,效果会更好.如果再使用调色板,对字符进行改色,就更像原图了. 这是原图: 这是生成的字符画: 废话不多说,直接上代码: 复制代码 代码如下: import Imagechars =" ...',;:clodxkLO0DGEKNWMM"fn=r'c:\users\liabc\desktop\jianbing.png'f1

  • 通过python绘制华强买瓜的字符画视频的步骤详解

    已经11月了,不知道还有没有人看华强买瓜...要把华强卖瓜做成字符视频,总共分为三步 读取视频 把每一帧转为字符画 把字符画表现出来 读取视频 通过imageio读取视频,除了pip install imageio之外,还需要pip install imageio-ffmpeg. 由于视频中的图像都是彩色的,故而需要将rgb三色转为单一的强度,并将转化后的图像装入一个列表中. import imageio import numpy as np import matplotlib.pyplot a

  • 用Python字符画出了一个谷爱凌

    目录 怎么实现的? 运行方法 原理分析 完整代码 之前经常在网上看到那种由一个个字符构成的视频,非常炫酷.一直不懂是怎么做的,这两天研究了一下,发现并不难. 先来看一个最终效果(如果模糊的话,点击下方链接看高清版): https://pan.baidu.com/s/1DvedXlDZ4dgHKLogdULogg 提取码:1234 怎么实现的? 简单来说,要将一个彩色的视频变成字符画出来的黑白视频,用下面几步就能搞定: 对原视频进行抽帧,对每一帧黑白化,并将像素点用对应的字符表示. 将表示出来的字

  • python实现图片转字符画

    本文实例为大家分享了python实现图片转字符画的具体代码,供大家参考,具体内容如下 源码(注释很详细): # -*- coding=utf-8 -*- ################################### #1:import argparse #2:parser = argparse.ArgumentParser() #3:parser.add_argument() #4:parser.parse_args() #解释:首先导入该模块:然后创建一个解析对象:然后向该对象中添加

  • Python将图片转换为字符画的方法

    最近在学习Python,看到网上用Python将图片转换成字符画便来学习一下 题目意思是,程序读入一个图片,以txt格式输出图片对应的字符画,如图所示: 以下是Python代码: # coding:utf-8 # 为一张图片生成对应的字符集图片 from PIL import Image import argparse # 命令行输入参数处理 parser = argparse.ArgumentParser() parser.add_argument('file') # 输入文件 parser.

  • Python制作动态字符画的源码

    字符画,一种由字母.标点.汉字或其他字符组成的图画.简单的字符画是利用字符的形状代替图画的线条来构成简单的人物.事物等形象,它一般由人工制作而成:复杂的字符画通常利用占用不同数量像素的字符代替图画上不同明暗的点,它一般由程序制作而成.字符画是互联网时代的产物,通常应用于即时聊天中. 首先,也是最重要的,先放源码 from PIL import Image as im from tkinter import * import cv2 # 随便打 codeLib = '''*.1''' count

  • 利用Python字符画生成甜心教主

    目录 工具准备 项目效果展示 项目思路解析 1.视频拆分成视频 2.将图片转换字符画 3.合成视频 简易源码分享 字符画:字符画是一系列字符的组合,我们可以把字符看作是比较大块的像素,一个字符能表现一种颜色,字符的种类越多,可以表现的颜色也越多,图片也会更有层次感. 如果我们想要手工绘制出字符画,首先要有扎实的美术基础,其次还要花费大量的时间和精力.但是我们可以使用Python,只需要几行代码,就能够将一张图片轻而易举地转化为一个字符画. 工具准备 开发工具:pycharm 开发环境:pytho

  • 利用Python如何画一颗心、小人发射爱心

    源码: #!/usr/bin/env python # -*- coding:utf-8 -*- import turtle import time # 画心形圆弧 def hart_arc(): for i in range(200): turtle.right(1) turtle.forward(2) def move_pen_position(x, y): turtle.hideturtle() # 隐藏画笔(先) turtle.up() # 提笔 turtle.goto(x, y) #

  • 利用Python实现自动生成图文并茂的数据分析

    目录 前言 1.一行命令,安装这个库 2.核心代码模块导入 ①提前导入相关内容,并且注册字体 ②注册字体 ③生成报告 前言 reportlab是Python的一个标准库,可以画图.画表格.编辑文字,最后可以输出PDF格式.它的逻辑和编辑一个word文档或者PPT很像.有两种方法: 建立一个空白文档,然后在上面写文字.画图等: 建立一个空白list,以填充表格的形式插入各种文本框.图片等,最后生成PDF文档. 因为需要产生一份给用户看的报告,里面需要插入图片.表格等,所以采用的是第二种方法. 1.

  • 利用Python脚本批量生成SQL语句

    通过Python脚本批量生成插入数据的SQL语句 原始SQL语句: INSERT INTO system_user (id, login_name, name, password, salt, code, createtime, email, main_org, positions, status, used, url, invalid, millis, id_card, phone_no, past, end_date, start_date) VALUES ('6', 'db', 'db',

  • 利用Python实现自动生成数据日报

    目录 前言 需求详解 数据处理 前言 人生苦短,快学Python! 日报,是大部分打工人绕不过的难题. 对于管理者来说,日报是事前管理的最好抓手,可以了解团队的氛围和状态.可对于员工来说,那就有的聊了.对于重复性的工作,我非常推荐大家使用Python将其变成模块化.自动化,帮助我们实现高效办公. 下面我们通过一个补写销售日报的案例,展示一下Python自动化办公的优势.本文简化了案例的流程. 需求详解 朋友的需求是这样的,他们平时的销售数据是记录在Excel上,汇总后会按照部门进行统计.但是今年

  • 利用Python为iOS10生成图标和截屏

    简介 这两天更新完Xcode8之后发现Xcode对图标的要求又有了变化,之前用的一个小应用"IconKit"还没赶上节奏,已经不能满足Xcode8的要求了. 于是就想起来用Python自己做个脚本来生成图标. 其实这个脚本很早就写了,现在为了适应iOS10,就修改完善下,并且放到了GitHub. 可以看看效果图: 1.png 代码: #encoding=utf-8 #by 不灭的小灯灯 #create date 2016/5/22 #update 2016/9/21 #support

  • 利用Python半自动化生成Nessus报告的方法

    0x01 前言 Nessus是一个功能强大而又易于使用的远程安全扫描器,Nessus对个人用户是免费的,只需要在官方网站上填邮箱,立马就能收到注册号了,对应商业用户是收费的.当然,个人用户是有16个IP限制,通过企业邮箱可以体验免费7天的Nessus专业版,IP无限制. Nessus激活码获取地址:https://www.tenable.com/products/nessus/activation-code 0x02 Nessus使用 登录后通过New Scan创建扫描任务,扫描完成后,我们即可

  • 如何利用python创作字符画

    目录 老规矩,先上效果图: 理论很简单,就是对图片操作,这里需要用到PIL的python包,里面有很好用的图像处理功能. 先打开图片,把图像调整大小: img = Image.open(picPath) img = img.resize((picW, picH)) 然后读取灰度值,再把灰度值和字符对应起来就行. from PIL import Image lstChars = list("$@B%8&WM#*oahkbdpqwmZO0QLaCJUYXzczjhdhsdavunxrjft/

  • python绘制字符画视频的示例代码

    目录 读取视频 转为字符 动画 已经11月了,不知道还有没有人看华强买瓜...要把华强卖瓜做成字符视频,总共分为三步 读取视频 把每一帧转为字符画 把字符画表现出来 读取视频 通过imageio读取视频,除了pip install imageio之外,还需要pip install imageio-ffmpeg. 由于视频中的图像都是彩色的,故而需要将rgb三色转为单一的强度,并将转化后的图像装入一个列表中. import imageio import numpy as np import mat

随机推荐