Python VTK计算曲面的高斯曲率和平均曲率

前言:

VTK,(visualizationtoolkit)是一个开放资源的免费软件系统,主要用于三维计算机图形学、图像处理和可视化。Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk。

本文介绍了 如何使用户Python版本的VTK计算曲面的高斯曲率并映射在曲面上。本例中使用了两个不同的表面,每个表面根据其高斯曲率和平均曲率着色。

  • 第一个曲面是一个超二次曲面,这演示了如何使用额外的过滤器来获得一个平滑的曲面。
  • 第二个曲面是参数化曲面,在这种情况下,该曲面已被三角剖分,因此无需额外处理。

为了获得漂亮的彩色图像,使用VTKColorTransfer函数为vtkLookupTable表生成一组颜色。我们使用了发散的颜色空间。由于为查找表选择的范围对称,白色表示中点值,而蓝色表示小于中点值的值,橙色表示大于中点值的颜色。在随机Hills高斯曲率曲面的情况下,这种颜色非常好地显示了曲面的性质。蓝色区域为鞍点(负高斯曲率),橙色区域为正高斯曲率。在平均曲率的情况下,蓝色表示垂直于一个主轴的负曲率。

主要函数介绍:

vtkSuperquadricSource: vtkSuperquadricSource 创建以原点为中心的多边形超二次曲面,可以设置尺寸。可以设置两个(φ)的纬度和经度(θ)方向的分辨率(多边形离散化)。浑圆度参数(纬度浑圆度和经度浑圆度)控制超二次曲面的形状。环形布尔值控制是否产生环形的超二次曲面。如果是的话,厚度参数控制的厚度的环形:0是最薄的环形,和1具有最小尺寸的孔。缩放尺度参数允许超二次曲面,在x,y,和z(在任何情况下,正确地生成法线向量)进行缩放。 尺寸参数控制的超二次曲面的size。原理是基于“刚性基于物理的超二次曲面”。

基本方法:

  •   SetCenter()设置中心点
  •   SetThickness()厚度参数控制的厚度的环形:0是最薄的环形,和1具有最小尺寸的孔
  •   ToroidalOn()开启环形
  •   SetPhiRoundness(),SetThetaRoundness设置经纬度的环形度
  •   SetScale()设置在x,y,z方向的超二次曲面的拉伸系数。

vtkParametricRandomHills: 生成覆盖随机放置的山丘的曲面。山丘的形状和高度会有所不同,因为附近山丘的存在会影响给定山丘的形状和高度。提供了一个选项,用于将山丘放置在曲面上的规则栅格上。在这种情况下,所有山丘的形状和高度都相同。

adjust_edge_curvatures: 此函数通过将该值替换为邻域中点曲率的平均值来调整曲面边缘的曲率。在调用此函数之前,请记住更新vtkCurvatures对象。

source:与vtkCurvatures对象相对应的vtkPolyData对象。

curvature_name:曲率的名称,“Gauss_curvature”或“Mean_curvature”。

epsilon:小于此值的绝对曲率值将设置为零。

mport numpy as np
import vtk
from vtk.util import numpy_support
from vtkmodules.numpy_interface import dataset_adapter as dsa

def main(argv):
    colors = vtk.vtkNamedColors()
    #产生曲面
    torus = vtk.vtkSuperquadricSource()
    torus.SetCenter(0.0, 0.0, 0.0)
    torus.SetScale(1.0, 1.0, 1.0)
    torus.SetPhiResolution(64)
    torus.SetThetaResolution(64)
    torus.SetThetaRoundness(1)
    torus.SetThickness(0.5)
    torus.SetSize(0.5)
    torus.SetToroidal(1)

    # 改变观察视角
    toroid_transform = vtk.vtkTransform()
    toroid_transform.RotateX(55)

    toroid_transform_filter = vtk.vtkTransformFilter()
    toroid_transform_filter.SetInputConnection(torus.GetOutputPort())
    toroid_transform_filter.SetTransform(toroid_transform)

    # The quadric is made of strips, so pass it through a triangle filter as
    # the curvature filter only operates on polys
    tri = vtk.vtkTriangleFilter()
    tri.SetInputConnection(toroid_transform_filter.GetOutputPort())

    #二次曲面在生成边的方式上存在严重的不连续性,因此让我们将其通过CleanPolyDataFilter并合并
    #任何重合或非常接近的点

    cleaner = vtk.vtkCleanPolyData()
    cleaner.SetInputConnection(tri.GetOutputPort())
    cleaner.SetTolerance(0.005)
    cleaner.Update()

    # 生成覆盖随机放置的山丘的曲面
    rh = vtk.vtkParametricRandomHills()
    rh_fn_src = vtk.vtkParametricFunctionSource()
    rh_fn_src.SetParametricFunction(rh)
    rh_fn_src.Update()

    sources = list()
    for i in range(0, 4):
        cc = vtk.vtkCurvatures()
        if i < 2:
            cc.SetInputConnection(cleaner.GetOutputPort())
        else:
            cc.SetInputConnection(rh_fn_src.GetOutputPort())
        if i % 2 == 0:
            cc.SetCurvatureTypeToGaussian()
            curvature_name = 'Gauss_Curvature'
        else:
            cc.SetCurvatureTypeToMean()
            curvature_name = 'Mean_Curvature'
        cc.Update()
        adjust_edge_curvatures(cc.GetOutput(), curvature_name)
        sources.append(cc.GetOutput())

    curvatures = {
        0: 'Gauss_Curvature',
        1: 'Mean_Curvature',
        2: 'Gauss_Curvature',
        3: 'Mean_Curvature',
    }

    # lut = get_diverging_lut()
    lut = get_diverging_lut1()

    renderers = list()
    mappers = list()
    actors = list()
    text_mappers = list()
    text_actors = list()
    scalar_bars = list()

    # Create a common text property.
    text_property = vtk.vtkTextProperty()
    text_property.SetFontSize(24)
    text_property.SetJustificationToCentered()

    # RenderWindow Dimensions
    #
    renderer_size = 512
    grid_dimensions = 2
    window_width = renderer_size * grid_dimensions
    window_height = renderer_size * grid_dimensions

    for idx, source in enumerate(sources):
        curvature_name = curvatures[idx].replace('_', '\n')

        source.GetPointData().SetActiveScalars(curvatures[idx])
        scalar_range = source.GetPointData().GetScalars(curvatures[idx]).GetRange()

        mappers.append(vtk.vtkPolyDataMapper())
        mappers[idx].SetInputData(source)
        mappers[idx].SetScalarModeToUsePointFieldData()
        mappers[idx].SelectColorArray(curvatures[idx])
        mappers[idx].SetScalarRange(scalar_range)
        mappers[idx].SetLookupTable(lut)

        actors.append(vtk.vtkActor())
        actors[idx].SetMapper(mappers[idx])

        text_mappers.append(vtk.vtkTextMapper())
        text_mappers[idx].SetInput(curvature_name)
        text_mappers[idx].SetTextProperty(text_property)

        text_actors.append(vtk.vtkActor2D())
        text_actors[idx].SetMapper(text_mappers[idx])
        text_actors[idx].SetPosition(250, 16)

        # Create a scalar bar
        scalar_bars.append(vtk.vtkScalarBarActor())
        scalar_bars[idx].SetLookupTable(mappers[idx].GetLookupTable())
        scalar_bars[idx].SetTitle(curvature_name)
        scalar_bars[idx].UnconstrainedFontSizeOn()
        scalar_bars[idx].SetNumberOfLabels(5)
        scalar_bars[idx].SetMaximumWidthInPixels(window_width // 8)
        scalar_bars[idx].SetMaximumHeightInPixels(window_height // 3)
        scalar_bars[idx].SetBarRatio(scalar_bars[idx].GetBarRatio() * 0.5)
        scalar_bars[idx].SetPosition(0.85, 0.1)

        renderers.append(vtk.vtkRenderer())

    for idx in range(len(sources)):
        if idx < grid_dimensions * grid_dimensions:
            renderers.append(vtk.vtkRenderer)

    # Create the RenderWindow
    #
    render_window = vtk.vtkRenderWindow()
    render_window.SetSize(renderer_size * grid_dimensions, renderer_size * grid_dimensions)
    render_window.SetWindowName('CurvaturesDemo')

    viewport = list()
    for row in range(grid_dimensions):
        for col in range(grid_dimensions):
            idx = row * grid_dimensions + col

            viewport[:] = []
            viewport.append(float(col) / grid_dimensions)
            viewport.append(float(grid_dimensions - (row + 1)) / grid_dimensions)
            viewport.append(float(col + 1) / grid_dimensions)
            viewport.append(float(grid_dimensions - row) / grid_dimensions)

            if idx > (len(sources) - 1):
                continue

            renderers[idx].SetViewport(viewport)
            render_window.AddRenderer(renderers[idx])

            renderers[idx].AddActor(actors[idx])
            renderers[idx].AddActor(text_actors[idx])
            renderers[idx].AddActor(scalar_bars[idx])
            renderers[idx].SetBackground(colors.GetColor3d('SlateGray'))

    interactor = vtk.vtkRenderWindowInteractor()
    interactor.SetRenderWindow(render_window)
    style = vtk.vtkInteractorStyleTrackballCamera()
    interactor.SetInteractorStyle(style)

    render_window.Render()

    interactor.Start()

def get_diverging_lut():

    ctf = vtk.vtkColorTransferFunction()
    ctf.SetColorSpaceToDiverging()
    # Cool to warm.
    ctf.AddRGBPoint(0.0, 0.230, 0.299, 0.754)
    ctf.AddRGBPoint(0.5, 0.865, 0.865, 0.865)
    ctf.AddRGBPoint(1.0, 0.706, 0.016, 0.150)

    table_size = 256
    lut = vtk.vtkLookupTable()
    lut.SetNumberOfTableValues(table_size)
    lut.Build()

    for i in range(0, table_size):
        rgba = list(ctf.GetColor(float(i) / table_size))
        rgba.append(1)
        lut.SetTableValue(i, rgba)

    return lut

def get_diverging_lut1():
    colors = vtk.vtkNamedColors()
    # Colour transfer function.
    ctf = vtk.vtkColorTransferFunction()
    ctf.SetColorSpaceToDiverging()
    p1 = [0.0] + list(colors.GetColor3d('MidnightBlue'))
    p2 = [0.5] + list(colors.GetColor3d('Gainsboro'))
    p3 = [1.0] + list(colors.GetColor3d('DarkOrange'))
    ctf.AddRGBPoint(*p1)
    ctf.AddRGBPoint(*p2)
    ctf.AddRGBPoint(*p3)

    table_size = 256
    lut = vtk.vtkLookupTable()
    lut.SetNumberOfTableValues(table_size)
    lut.Build()

    for i in range(0, table_size):
        rgba = list(ctf.GetColor(float(i) / table_size))
        rgba.append(1)
        lut.SetTableValue(i, rgba)

    return lut

def vtk_version_ok(major, minor, build):

    requested_version = (100 * int(major) + int(minor)) * 100000000 + int(build)
    ver = vtk.vtkVersion()
    actual_version = (100 * ver.GetVTKMajorVersion() + ver.GetVTKMinorVersion()) \
                     * 100000000 + ver.GetVTKBuildVersion()
    if actual_version >= requested_version:
        return True
    else:
        return False

def adjust_edge_curvatures(source, curvature_name, epsilon=1.0e-08):

    def point_neighbourhood(pt_id):

        cell_ids = vtk.vtkIdList()
        source.GetPointCells(pt_id, cell_ids)
        neighbour = set()
        for cell_idx in range(0, cell_ids.GetNumberOfIds()):
            cell_id = cell_ids.GetId(cell_idx)
            cell_point_ids = vtk.vtkIdList()
            source.GetCellPoints(cell_id, cell_point_ids)
            for cell_pt_idx in range(0, cell_point_ids.GetNumberOfIds()):
                neighbour.add(cell_point_ids.GetId(cell_pt_idx))
        return neighbour

    def compute_distance(pt_id_a, pt_id_b):

        #计算距离.

        pt_a = np.array(source.GetPoint(pt_id_a))
        pt_b = np.array(source.GetPoint(pt_id_b))
        return np.linalg.norm(pt_a - pt_b)

    # 获取活动标量
    source.GetPointData().SetActiveScalars(curvature_name)
    np_source = dsa.WrapDataObject(source)
    curvatures = np_source.PointData[curvature_name]

    #  获得边缘点的ID
    array_name = 'ids'
    id_filter = vtk.vtkIdFilter()
    id_filter.SetInputData(source)
    id_filter.SetPointIds(True)
    id_filter.SetCellIds(False)
    id_filter.SetPointIdsArrayName(array_name)
    id_filter.SetCellIdsArrayName(array_name)
    id_filter.Update()

    edges = vtk.vtkFeatureEdges()
    edges.SetInputConnection(id_filter.GetOutputPort())
    edges.BoundaryEdgesOn()
    edges.ManifoldEdgesOff()
    edges.NonManifoldEdgesOff()
    edges.FeatureEdgesOff()
    edges.Update()

    edge_array = edges.GetOutput().GetPointData().GetArray(array_name)
    boundary_ids = []
    for i in range(edges.GetOutput().GetNumberOfPoints()):
        boundary_ids.append(edge_array.GetValue(i))
    # Remove duplicate Ids.
    p_ids_set = set(boundary_ids)

    #迭代边缘点并计算曲率作为相邻点的加权平均值。
    count_invalid = 0
    for p_id in boundary_ids:
        p_ids_neighbors = point_neighbourhood(p_id)
        # Keep only interior points.
        p_ids_neighbors -= p_ids_set
        # Compute distances and extract curvature values.
        curvs = [curvatures[p_id_n] for p_id_n in p_ids_neighbors]
        dists = [compute_distance(p_id_n, p_id) for p_id_n in p_ids_neighbors]
        curvs = np.array(curvs)
        dists = np.array(dists)
        curvs = curvs[dists > 0]
        dists = dists[dists > 0]
        if len(curvs) > 0:
            weights = 1 / np.array(dists)
            weights /= weights.sum()
            new_curv = np.dot(curvs, weights)
        else:
            # Corner case.
            count_invalid += 1
            # Assuming the curvature of the point is planar.
            new_curv = 0.0
        # Set the new curvature value.
        curvatures[p_id] = new_curv

    #  将小值设置为0
    if epsilon != 0.0:
        curvatures = np.where(abs(curvatures) < epsilon, 0, curvatures)
        # Curvatures is now an ndarray
        curv = numpy_support.numpy_to_vtk(num_array=curvatures.ravel(),
                                          deep=True,
                                          array_type=vtk.VTK_DOUBLE)
        curv.SetName(curvature_name)
        source.GetPointData().RemoveArray(curvature_name)
        source.GetPointData().AddArray(curv)
        source.GetPointData().SetActiveScalars(curvature_name)

if __name__ == '__main__':
    import sys

    main(sys.argv)

显示效果如下:

到此这篇关于Python VTK计算曲面的高斯曲率和平均曲率的文章就介绍到这了,更多相关 Python-VTK计算 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用Python VTK 完成图像切割

    目录 1.读取二维图片序列完成面绘制 2.vtk.vtkOutlineFilter()介绍 3.隐函数平面模块vtk.vtkImplicitPlaneWidget() 4.vtk.vtkClipPolyData() 切割效果展示 1.读取二维图片序列完成面绘制 详情见Python-VTK批量读取二维切片并显示三维模型 2.vtk.vtkOutlineFilter()介绍 这个空间就相当于生成渲染模型的轮廓线,比如三维图像大小为(256x256x200),那么这个控件就会生成一个长宽高分别为256

  • VTK与Python实现机械臂三维模型可视化详解

    三维可视化系统的建立依赖于三维图形平台, 如 OpenGL.VTK.OGRE.OSG等, 传统的方法多采用OpenGL进行底层编程,即对其特有的函数进行定量操作, 需要开发人员熟悉相关函数, 从而造成了开发难度大. 周期长等问题.VTK. ORGE.OSG等平台使用封装更好的函数简化了开发过程.下面将使用Python与VTK进行机器人上位机监控界面的快速原型开发. 完整的上位机程序需要有三维显示模块.机器人信息监测模块(位置/角度/速度/电量/温度/错误信息...).通信模块(串口/USB/WI

  • Python-VTK批量读取二维切片并显示三维模型

    目录 主要函数介绍 效果展示 前言: VTK,(visualizationtoolkit)是一个开放资源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk. 主要函数介绍 vtk.vtkJPEGReader(): 读取图片的接口,可以通过该接口设置读取的图片位置.大小.维度.

  • 如何使用Python VTK绘制线条

    主要函数介绍: vtk.vtkPoints() 在VTK中用于定义点的类,使用points.InsertPoint(index, x, y, z) 即可插入点集.函数中,第一个参数是点的序号,后面是三个参数是点的坐标. vtk.vtkLineSource() 在VTK中定义直线的类,通过SetPoints(points),输入直线经过的点. vtk.vtkParametricSpline() 在VTK中定义曲线的类,通过SetPoints(points),输入曲线经过的点. vtk.vtkPar

  • Python-VTK隐式函数属性选择和剪切数据

    前言: VTK,(visualizationtoolkit)是一个开放资源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk. 本文主要介绍了如何利用隐式函数的属性来选择和剪切数据,尤其是如何使用区域分隔属性来选择数据. 使用隐式函数选择或提取数据意味着选择位于函数特定区域内

  • 如何使用Python VTK高亮显示actor

    前言: VTK,(visualizationtoolkit)是一个开放资源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk. 主要函数介绍: NewPickedActor.GetProperty(): 通过该函数,可以设置actor的性质,如颜色.表面样式等. vtk.vt

  • python+VTK环境搭建及第一个简单程序代码

    简介: Vtk,(visualization toolkit)是一个开源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk. 在Windows环境下用Python语言开发VTK程序 1.安装Python集成开发环境IDLE,相信大家已经轻车熟路,如果不了解,大家可以参考:运行

  • Python vtk读取并显示dicom文件示例

    因为做项目的原因,所以接触到了医学图像dicom文件.vtk刚开始看,这里仅仅只是其最简单的读取显示功能.此处用到了vtk库,可自行百度安装方法. 下面附上代码: from vtk import * # reader the dicom file reader = vtkDICOMImageReader() reader.SetDataByteOrderToLittleEndian() reader.SetFileName("00efb2fedf64b867a36031a394e5855a.dc

  • Python VTK映射三维模型表面距离

    数据准备: 需要准备两个stl文件.Python需要安装vtk库 步骤一:数据读取 首先通过vtk.vtkSTLReader() 定义stl文件读取接口,再通过reader1.GetOutput() 就可以获得stl在vtk工作流的数据. 步骤二:去除重复点 通过vtk.vtkCleanPolyData() 可以去除模型中的重复点 步骤三:计算距离 使用 vtk.vtkDistancePolyDataFilter() ,使用上一步中过滤掉重复点后的数据作为输入.如distanceFilter.S

  • Python VTK计算曲面的高斯曲率和平均曲率

    前言: VTK,(visualizationtoolkit)是一个开放资源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk. 本文介绍了 如何使用户Python版本的VTK计算曲面的高斯曲率并映射在曲面上.本例中使用了两个不同的表面,每个表面根据其高斯曲率和平均曲率着色.

  • Python科学计算之NumPy入门教程

    前言 NumPy是Python用于处理大型矩阵的一个速度极快的数学库.它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Python中无法达到的运行速度.这是由于矩阵中每个元素的数据类型都是一样的,这也就减少了运算过程中的类型检测. 矩阵基础 在 numpy 包中我们用数组来表示向量,矩阵和高阶数据结构.他们就由数组构成,一维就用一个数组表示,二维就是数组中包含数组表示. 创建 # coding: utf-8 import numpy as np a =

  • python实现计算资源图标crc值的方法

    本文实例讲述了python实现计算资源图标crc值的方法,分享给大家供大家参考.具体方法如下: 实现该功能的关键在于解析资源信息,找到icon的数据,然后计算这些数据的crc 具体实现代码如下: def _get_iconcrc(self, file_path): """ Generates the crc32 hash of the icon of the file. @return: str, the str value of the file's icon "

  • Python简单计算文件夹大小的方法

    本文实例讲述了Python简单计算文件夹大小的方法.分享给大家供大家参考.具体如下: import os, re """ 查看文件夹下的所有文件及文件夹 join为拼接函数 """ def Look_File(path): for root , dirs, files in os.walk(path, True): print root #主目录 for item in files: #主目录下的文件夹 print os.path.join(ro

  • Python实现计算两个时间之间相差天数的方法

    本文实例讲述了Python实现计算两个时间之间相差天数的方法.分享给大家供大家参考,具体如下: #-*- encoding:UTF-8 -*- from datetime import date import time nowtime = date.today() def convertstringtodate(stringtime): "把字符串类型转换为date类型" if stringtime[0:2] == "20": year=stringtime[0:4

  • python实现计算倒数的方法

    本文实例讲述了python实现计算倒数的方法.分享给大家供大家参考.具体如下: class Expr: def __add__(self, other): return Plus(self, other) def __mul__(self, other): return Times(self, other) class Int(Expr): def __init__(self, n): self.n = n def d(self, v): return Int(0) def __str__(se

  • Python简单计算数组元素平均值的方法示例

    本文实例讲述了Python简单计算数组元素平均值的方法.分享给大家供大家参考,具体如下: Python 环境:Python 2.7.12 x64 IDE :     Wing IDE Professional  5.1.12-1 题目:  求数组元素的平均值 实现代码: # coding:utf-8 #求数组元素的平均值 a=[1,4,8,10,12] b=len(a) sum=0 print "我们测试结果:" print "数组长度为:",b for i in

  • Python科学计算包numpy用法实例详解

    本文实例讲述了Python科学计算包numpy用法.分享给大家供大家参考,具体如下: 1 数据结构 numpy使用一种称为ndarray的类似Matlab的矩阵式数据结构管理数据,比python的列表和标准库的array类更为强大,处理数据更为方便. 1.1 数组的生成 在numpy中,生成数组需要指定数据类型,默认是int32,即整数,可以通过dtype参数来指定,一般用到的有int32.bool.float32.uint32.complex,分别代表整数.布尔值.浮点型.无符号整数和复数 一

随机推荐