13个Pandas实用技巧,助你提高开发效率

原作:风控猎人

整理:数据管道

归纳整理了一些工作中常用到的pandas使用技巧,方便更高效地实现数据分析。

1.计算变量缺失率

df=pd.read_csv('titanic_train.csv')
def missing_cal(df):
  """
  df :数据集

  return:每个变量的缺失率
  """
  missing_series = df.isnull().sum()/df.shape[0]
  missing_df = pd.DataFrame(missing_series).reset_index()
  missing_df = missing_df.rename(columns={'index':'col',
                      0:'missing_pct'})
  missing_df = missing_df.sort_values('missing_pct',ascending=False).reset_index(drop=True)
  return missing_df
missing_cal(df)

如果需要计算样本的缺失率分布,只要加上参数axis=1.

2.获取分组里最大值所在的行方法

分为分组中有重复值和无重复值两种。无重复值的情况。

df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]})
df

df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())]

先按Mt列进行分组,然后对分组之后的数据框使用idxmax函数取出Count最大值所在的列,再用iloc位置索引将行取出。有重复值的情况

df["rank"] = df.groupby("ID")["score"].rank(method="min", ascending=False).astype(np.int64)
df[df["rank"] == 1][["ID", "class"]]

对ID进行分组之后再对分数应用rank函数,分数相同的情况会赋予相同的排名,然后取出排名为1的数据。

3.多列合并为一行

df = pd.DataFrame({'id_part':['a','b','c','d'], 'pred':[0.1,0.2,0.3,0.4], 'pred_class':['women','man','cat','dog'], 'v_id':['d1','d2','d3','d1']})

df.groupby(['v_id']).agg({'pred_class': [', '.join],'pred': lambda x: list(x),
'id_part': 'first'}).reset_index()

4.删除包含特定字符串所在的行

df = pd.DataFrame({'a':[1,2,3,4], 'b':['s1', 'exp_s2', 's3','exps4'], 'c':[5,6,7,8], 'd':[3,2,5,10]})
df[df['b'].str.contains('exp')]

5.组内排序

df = pd.DataFrame([['A',1],['A',3],['A',2],['B',5],['B',9]], columns = ['name','score'])

介绍两种高效地组内排序的方法。

df.sort_values(['name','score'], ascending = [True,False])
df.groupby('name').apply(lambda x: x.sort_values('score', ascending=False)).reset_index(drop=True)

6.选择特定类型的列

drinks = pd.read_csv('data/drinks.csv')
# 选择所有数值型的列
drinks.select_dtypes(include=['number']).head()
# 选择所有字符型的列
drinks.select_dtypes(include=['object']).head()
drinks.select_dtypes(include=['number','object','category','datetime']).head()
# 用 exclude 关键字排除指定的数据类型
drinks.select_dtypes(exclude=['number']).head()

7.字符串转换为数值

df = pd.DataFrame({'列1':['1.1','2.2','3.3'],
         '列2':['4.4','5.5','6.6'],
         '列3':['7.7','8.8','-']})
df
df.astype({'列1':'float','列2':'float'}).dtypes

用这种方式转换第三列会出错,因为这列里包含一个代表 0 的下划线,pandas 无法自动判断这个下划线。为了解决这个问题,可以使用 to_numeric() 函数来处理第三列,让 pandas 把任意无效输入转为 NaN。

df = df.apply(pd.to_numeric, errors='coerce').fillna(0)

8.优化 DataFrame 对内存的占用

方法一:只读取切实所需的列,使用usecols参数

cols = ['beer_servings','continent']
small_drinks = pd.read_csv('data/drinks.csv', usecols=cols)

方法二:把包含类别型数据的 object 列转换为 Category 数据类型,通过指定 dtype 参数实现。

dtypes ={'continent':'category'}
smaller_drinks = pd.read_csv('data/drinks.csv',usecols=cols, dtype=dtypes)

9.根据最大的类别筛选 DataFrame

movies = pd.read_csv('data/imdb_1000.csv')
counts = movies.genre.value_counts()
movies[movies.genre.isin(counts.nlargest(3).index)].head()

10.把字符串分割为多列

df = pd.DataFrame({'姓名':['张 三','李 四','王 五'],
          '所在地':['北京-东城区','上海-黄浦区','广州-白云区']})
df
df.姓名.str.split(' ', expand=True)

11.把 Series 里的列表转换为 DataFrame

df = pd.DataFrame({'列1':['a','b','c'],'列2':[[10,20], [20,30], [30,40]]})
df

df_new = df.列2.apply(pd.Series)
pd.concat([df,df_new], axis='columns')

12.用多个函数聚合

orders = pd.read_csv('data/chipotle.tsv', sep='\t')
orders.groupby('order_id').item_price.agg(['sum','count']).head()

13.分组聚合

import pandas as pd
df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
  'key2':['one', 'two', 'one', 'two', 'one'],
  'data1':np.random.randn(5),
   'data2':np.random.randn(5)})
df

for name, group in df.groupby('key1'):
  print(name)
  print(group)

dict(list(df.groupby('key1')))

通过字典或Series进行分组

people = pd.DataFrame(np.random.randn(5, 5),
   columns=['a', 'b', 'c', 'd', 'e'],
   index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
mapping = {'a':'red', 'b':'red', 'c':'blue',
   'd':'blue', 'e':'red', 'f':'orange'}
by_column = people.groupby(mapping, axis=1)
by_column.sum()

以上就是13个Pandas实用技巧,助你提高开发效率的详细内容,更多关于Pandas实用技巧的资料请关注我们其它相关文章!

(0)

相关推荐

  • python使用pandas处理大数据节省内存技巧(推荐)

    一般来说,用pandas处理小于100兆的数据,性能不是问题.当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败. 当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备.而且,这些工具不像pandas那样具有丰富的进行高质量数据清洗.探索和分析的特性.对于中等规模的数据,我们的愿望是尽量让pandas继续发挥其优势,而不是换用其他工具. 本文我们讨论pandas的内存使用,展示怎样

  • Pandas实现数据类型转换的一些小技巧汇总

    前言 Pandas是Python当中重要的数据分析工具,利用Pandas进行数据分析时,确保使用正确的数据类型是非常重要的,否则可能会导致一些不可预知的错误发生. Pandas 的数据类型:数据类型本质上是编程语言用来理解如何存储和操作数据的内部结构.例如,一个程序需要理解你可以将两个数字加起来,比如 5 + 10 得到 15.或者,如果是两个字符串,比如「cat」和「hat」,你可以将它们连接(加)起来得到「cathat」.尚学堂•百战程序员陈老师指出有关 Pandas 数据类型的一个可能令人

  • 11个Python Pandas小技巧让你的工作更高效(附代码实例)

    本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助. 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式. Pandas是一个在Python中广泛应用的数据分析包.市面上有很多关于Pandas的经典教程,但本文介绍几个隐藏的炫酷小技巧,我相信这些会对你有所帮助. 1. read_csv 这是读取数据的入门级命令.当要你所读取的数据量特别大时,试着加上这个参数nrows = 5,就可以在载入全部数据前先读取一小部分数据.如此一来,就可以避免选错分隔符这样的错误啦(数据不

  • pandas 使用均值填充缺失值列的小技巧分享

    pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样: for column in list(df.columns[df.isnull().sum() > 0]): mean_val = df[column].mean() df[column].fillna(mean_val, inplace=True) # -------代码分解------- # 判断哪些列有缺失值,得到series对象 df.isnull().sum() > 0

  • 13个Pandas实用技巧,助你提高开发效率

    原作:风控猎人 整理:数据管道 归纳整理了一些工作中常用到的pandas使用技巧,方便更高效地实现数据分析. 1.计算变量缺失率 df=pd.read_csv('titanic_train.csv') def missing_cal(df): """ df :数据集 return:每个变量的缺失率 """ missing_series = df.isnull().sum()/df.shape[0] missing_df = pd.DataFram

  • python 中的9个实用技巧,助你提高开发效率

    整理字符串输入 整理用户输入的问题在编程过程中极为常见.通常情况下,将字符转换为小写或大写就够了,有时你可以使用正则表达式模块「Regex」完成这项工作.但是如果问题很复杂,可能有更好的方法来解决: user_input = "This string has some whitespaces... " character_map = { ord( ) : , ord( ) : , ord( ) : None } user_input.translate(character_map) #

  • Python数据处理的26个Pandas实用技巧总结

    目录 从剪贴板中创建DataFram 将DataFrame划分为两个随机的子集 多种类型过滤DataFrame DataFrame筛选数量最多类别 处理缺失值 一个字符串划分成多列 Series扩展成DataFrame 对多个函数进行聚合 聚合结果与DataFrame组合 选取行和列的切片 MultiIndexedSeries重塑 创建数据透视表 连续数据转类别数据 StyleaDataFrame 额外技巧 ProfileaDataFrame 大家好,今天给大家分享一篇 pandas 实用技巧,

  • python 提高开发效率的5个小技巧

    很多时候学习是一种难者不会,会者不难的事情. 下面的5个python技巧是性价比极高的知识点,一学就会,不难但是相当管用. 使用交互模式 使用python -i xxxx.py可以直接进入python的交互模式,可以很方便的调用xxxx.py中定义的方法和函数,特别适合调试没有main()方法的文件,强力推荐. 使用pdb进行调试 很多从c++/java转到python的同学可能对python没有断点功能相当失望. 其实python自带的pdb库就可以解决这个问题. 看这个例子. def sum

  • 56个实用的JavaScript 工具函数助你提升开发效率

    目录 1. 数字操作 (1)生成指定范围随机数 2. 数组操作 (1)数组乱序 (2)数组扁平化 (3)数组中获取随机数 3. 字符串操作 (1)生成随机字符串 (2)字符串首字母大写 (3)手机号中间四位变成* (4)驼峰命名转换成短横线命名 (5)短横线命名转换成驼峰命名 (6)全角转换为半角 (7)半角转换为全角 4. 格式转化 (1)数字转化为大写金额 (2)数字转化为中文数字 5. 操作存储 (1)存储loalStorage (2)获取localStorage (3)删除localSt

  • IntelliJ Idea常用11款插件(提高开发效率)

    插件安装方式: 新版本IDE安装方式略有不同,不一一赘述 1.Background Image Plus 这款插件并不能直接提高你的开发效率,但是可以让你面对的IDE不再单调,当把背景设置成你自己心仪的的图片, 是不是会感觉很赏心悦目,编码效率会不会因此间接的提高?! 使用方法: 注意,如果是IDEA版本是2020.1版本以上就不需要再额外装这个插件,这个插件是已经内置安装了.  2.Mybatis Log Plugin Mybatis现在是java中操作数据库的首选,在开发的时候,我们都会把M

  • [Asp.Net Core]提高开发效率的方法

    一.概述 在园子里面有很多关于各种技术细节的研究文章,都是比较牛逼的框架研究:但是一直没有看到关于怎么样提高开发效率的文章,大多提高开发效率的文章都是关于自动化等方面的辅助工具类型的,而不是开发中的一些小技巧:今天从编码规范.编码技巧.开发思想.设计模式等各方面的经验来分享如何提高开发效率. 二.实际场景 在这个前后端分离盛行的开发年代,分工比较明确,开发者分前端开发者和后端开发者,然而感到欣慰的是.net 开发者大多是担任着全栈开发的职责,有经验的开发者都是从前端走过来的,说白了前端业务代码对

  • 20个提高开发效率的VS Code快捷键(推荐)

    以下为译文: 并不是每一个开发者都有足够的时间,去了解熟悉所有的快捷键,来帮助我们提高编码效率.因为快捷键实在是太多了. 所以,下面我列出了我最喜欢的快捷键. 1.多行转一行 在 MAC 上:Ctrl + J 在 Ubuntu/Windows 上:通过File> Preferences > Keyboard shortcuts打开快捷键的设置,并且绑定editor.action.joinLines你自己的快捷键. 2.格式化代码 这个快捷键可以帮助我们对代码进行缩进. 注:可以在编码的任何时候

  • 强烈推荐IDEA提高开发效率的必备插件

    前言 今天小编给大家推荐几款值得剁手的插件,真的很实用,安装就对了,在工作中,我们可能会时常因为编码效率,而烦恼,可能有时候并不是我们的编码效率不高,只是我们没用对方法,没用到好的工具,能够节省我们的开发时间,这是小编在开发中常使用的一些插件,所以推荐给大家. 一.Lombok插件 Lombok项目是一个Java库,它会自动插入您的编辑器和构建工具中,从而使您的Java更加生动有趣. 永远不要再写一个get.set或equals方法,一个注释就能够帮您的类有一个功能全面的生成器,自动化帮你生成你

  • Python利用IPython提高开发效率

    一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执行 -> 探索 ,而大部分和数据分析相关的代 码都含有探索式操作(比如试误法和迭代法),所以 IPython 能大大提高编码效率. IPython 发展到现在,它不仅仅只是一个加强版的 Python shell 了, 它集成了 GUI 控制台,这可以让你直接进行绘图操作:它还有一个基于 Web 的交互式笔记

随机推荐