tensorflow-gpu安装的常见问题及解决方案

装tensorflow-gpu的时候经常遇到问题,自己装过几次,经常遇到相同或者类似的问题,所以打算记录一下,也希望对其他人有所帮助

基本信息

  • tensorflow-gpu
  • pip安装(virtualenv等虚拟安装实质也是pip安装,只是建了个独立的环境,不会影响系统环境,查问题比较容易,最多重新再创建一个干净的环境再来)

安装完之后会用import tensorflow看是否安装成功,结果报错,主要有碰到下面两大类报错信息:

1.ImportError: DLL load failed: 找不到指定的模块 之pywrap_tensorflow.py

报错信息里面有大量的pywrap_xxx相关的脚本报错:

Traceback (most recent call last):
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module>
 from tensorflow.python.pywrap_tensorflow_internal import *
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module>
 _pywrap_tensorflow_internal = swig_import_helper()
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper
 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
 File "E:\study\machinelearning\ENV\lib\imp.py", line 242, in load_module
 return load_dynamic(name, filename, file)
 File "E:\study\machinelearning\ENV\lib\imp.py", line 342, in load_dynamic
 return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。

这类错误出现的最多,主要有几大类原因:

(1)Microsoft Visual C++ 2015 Redistributable Update 3 没有装

这个是自己第一次装的时候碰到的,下载 vc_redist.x64.exe安装之后就ok了

再生波澜

自己今天再装的时候,下载下来发现安装不了,看日志是说我的vs版本比较新,所以不能装。这个时候可以可以看看自己本机的system32下面有没有MSVCP140.DLL这个文件

其他解决方案

有些网友说用的比较新的tensorflow,装了2017的Redistributable包就好了,你也可以试试

我再装完2017的包之后,并且检查自己系统中已经有了MSVCP140.DLL文件依旧报同样的错误

(2)cuda和cudnn版本不一致

这个问题也是非常多的,我装了很多次的cuda基本上没有安装失败过,但是遇到和cudnn版本不一致的情况。因为下载的cuda默认是最新版本的cuda10.0,而我下载的cudnn当时用的旧的,也就是给cuda9.0的,所以后面换了一下也就解决问题了

cuda下载

我这里默认点完自己系统的配置(win10x64)得到的是最新的cuda10-win10,可以点击最右边的Legacy Releases看到更早一点的版本

cuda安装和验证

一路next貌似没遇到过啥问题

验证的话:在命令行下面输入nvcc -V,看是否OK

另外sample下面的两个是deviceQuery.exe和bandwidthTest.exe执行都没有出现问题过

cudnn下载

要登录nvidia developer账号

点开最下面的Archived cuDNN Releases可以看到更多的版本,因为我下载的是cuda-9.0,稳妥起见,我下载的cudnn版本是:Download cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0

按照道理来讲这里的Download cuDNN v7.5.0 (Feb 21, 2019), for CUDA 9.0应该也可以,下次验证再确认一下。

cudnn安装

在下载的页面可以打开Installation-Guide看一下windows的cudnn安装指南,主要有以下操作

(1)把解压缩的cudnn下面的bin、lib和include三个文件夹下面的文件拷贝到cuda安装的目录下面同名的目录下面

cuda路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

(2)把CUDA路径添加到环境变量的CUDA_PATH中

cuda本书在安装的时候会把cuda的安装路径添加的环境变量的path中(注意:是在path的最前面,不容易看到),所以不必自己把cuda的路径添加到path中

这里自己是把解压后的cudnn放到d盘,比如:D\cuda,然后把D:\cuda\bin放到了path中,因为网上有些人是这样建议的。但是看cudn的安装指南并没有提及到,所以感觉应该不需要

很遗憾的是,今天保证这里版本一直之后,还是依旧报 = =

(3)tensorflow-gpu版本不一致

安装tensorflow-gpu的时候一般都是用的默认指令:

pip install --upgrade tensorflow-gpu

结果是会把tensorflow-gpu的最新版本装上,我的版本情况如下:

(1)python:3.6.0 (2)cuda-9.0 (3)cudnn-7.0 (4)tensorflow-gpu-1.13.0

最新的cuda是10.0了,但是我装的是9.0,所以我把tensorflow-gpu装到1.12.0,然后完美解决问题了。_

pip uninstall
tensorflow-gpu==1.13.0
pip install tensorflow-gpu==1.12.0

这里说明tensorflow-gpu1.13.0估计是用了最新的cuda版本中的内容,也算是版本不一致了。

如果跟我一样,上面的问题都解决了,那就看看是不是这里版本太新或者太旧了。这里有个插曲,因为我开始不小心把1.12.0输成了1.2.0,结果还是不行,没注意结果纯粹浪费了一段时间。

(4)其他python库版本问题等

网上有些人还遇到numpy等python库版本等的问题,我倒是没遇到,因为安装tensorflw-gpu的时候会把相关的依赖包都给下载下来

2.TensorFlow pip installation issue: cannot import name 'descriptor'之graph_pb2.py

报错信息如下有graph_xxx相关的脚本报错:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\__init__.py", line 24, in <module>
 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\__init__.py", line 59, in <module>
 from tensorflow.core.framework.graph_pb2 import *
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\core\framework\graph_pb2.py", line 6, in <module>
 from google.protobuf import descriptor as _descriptor
 File "F:\study\machinelearning\ENV\lib\site-packages\google\protobuf\descriptor.py", line 47, in <module>
 from google.protobuf.pyext import _message
ImportError: DLL load failed: 找不到指定的程序。

这个我碰到过两次,都是protobuf的版本高了的缘故,网上搜到的也是这个原因,把protobuf的版本从3.6.1降到3.6.0解决

pip list
pip uninstall protobuf
pip install protobuf==3.6.0
pip list

参考

[1]import error: load dll failed

总结

以上所述是小编给大家介绍的tensorflow-gpu安装的常见问题及解决方案,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • win10系统Anaconda和Pycharm的Tensorflow2.0之CPU和GPU版本安装教程

    tf2.0的三个优点: 1.方便搭建网络架构: 2.自动求导 3.GPU加速(便于大数据计算) 安装过程(概要提示) step1:安装annaconda3 step2:安装pycharm step3:安装tensorflow2.0 cpu版本 (1)进入anaconda prompt(anaconda3) (2)默认为(base)环境 (3)输入python,查看python版本:输入exit()退出 (4)输入conda info --envs查看虚拟环境 (5)此处以在(base)环境中安装

  • tensorflow -gpu安装方法(不用自己装cuda,cdnn)

    TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1]  . Tensorflow拥有多层级结构,可部署于各类服务器.PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 [1-2]  . tensorflow -gpu安装 首先,安装Anoconda 1. 官网下载点我:

  • win10安装tensorflow-gpu1.8.0详细完整步骤

    在整个安装的过程中也遇到了很多的坑,故此做个记录,争取下次不再犯! 我的整个基本配置如下: 电脑环境如下:win10(64位)+CPU:E5-2603 +GPU:GTX 1070 需要安装的软件如下:Anaconda3-4.2.0-Windows-x86_64(python 3.5.2) + tensorflow-gpu 1.8 + CUDA 9.0 + cuDNN v7.1 for CUDA9.0 若你想在自己的windows上安装tensorflow-gpu,一般化也可以遵循如下的步骤. 1

  • tensorflow-gpu安装的常见问题及解决方案

    装tensorflow-gpu的时候经常遇到问题,自己装过几次,经常遇到相同或者类似的问题,所以打算记录一下,也希望对其他人有所帮助 基本信息 tensorflow-gpu pip安装(virtualenv等虚拟安装实质也是pip安装,只是建了个独立的环境,不会影响系统环境,查问题比较容易,最多重新再创建一个干净的环境再来) 安装完之后会用import tensorflow看是否安装成功,结果报错,主要有碰到下面两大类报错信息: 1.ImportError: DLL load failed: 找

  • SQL Server数据库安装时常见问题解决方案集锦

    本文我们总结了几个在安装SQL Server数据库时常见问题的解决方案,供初学者学习参考,接下来让我们来一起看一下吧. 常见问题一: 安装Sql Server 2000时出现"以前进行的程序创建了挂起的文件操作,运行安装程序之前,必须重新启动计算机" ,重启后仍然无效. 解决方案: 1.不用退出Sql Server 2000安装程序,直接切换到桌面. 2.打开注册表编辑器(在"运行"中敲入"regedit"之后回车即可),定位到注册表的HKEY_

  • Window10上Tensorflow的安装(CPU和GPU版本)

    之前摸索tensorflow的时候安装踩坑的时间非常久,主要是没搞懂几个东西的关系,就在瞎调试,以及当时很多东西不懂,很多报错也一知半解的.这次重装系统后正好需要再配置一次,把再一次的经历记录一下.我的电脑是华为的matebook13,intel i5-8625U,MX250显卡,win10系统.(不得不吐槽很垃圾,只能满足测试测试调调代码的需求) 深度学习利用Tensorflow平台,其中的Keras Sequential API对新用户非常的友好,可以将各基础组件组合在一起来构建模型. (官

  • 微信小程序 HTTPS报错整理常见问题及解决方案

    微信小程序 HTTPS报错常见问题及解决方案 微信小程序开放公测已经一个多月了,因官方需求文档要求后台使用HTTPS请求进行网络通信,不满足条件的域名和协议无法请求.越来越多的开发者纷纷使用SSL证书实践微信小程序的应用情况,但仍然会碰到各类问题.本文列举了SSL证书常见的报错和解决办法,供开发者参考. 常见问题一 在微信小程序内测的过程中,几乎每个开发者们在实践的过程中都遇到了下图的报错: 原因及解决办法: 这是因为wx.request 发起的是 https 请求,微信小程序读取大部分是请求A

  • vue项目中常见问题及解决方案(推荐)

    webpack项目中自动引入全局scss变量文件 假设我们有一个公共的scss变量文件variables.scss /*存放所有全局变量*/ $card-title:#C7D200; //首页 卡片标题颜色 $bc-color:#182037; $hoverColor: #7abef9; //链接hover颜色 $fontColor: #E6EFFF; //字体颜色-白色 webpack要识别scss,需要先安装sass的loader npm install --save-dev sass-lo

  • 解决TensorFlow GPU版出现OOM错误的问题

    问题: 在使用mask_rcnn预测自己的数据集时,会出现下面错误: ResourceExhaustedError: OOM when allocating tensor with shape[1,512,1120,1120] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node rpn_model/rpn_conv_shared/convolution}} =

  • 关于win10在tensorflow的安装及在pycharm中运行步骤详解

    本文介绍在win10中安装tensorflow的步骤: 1.安装anaconda3 2.新建conda环境变量,可建多个环境在内部安装多个tensorflow版本,1.x和2.x版本功能差别太大,代码也很大区别 3.环境中安装python和fensorflow 4.用tensorflow运行一段测试程序 安装anaconda下载地址(清华镜像): https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/选择最新版本 开始安装anaconda 选

  • 在PyCharm中遇到pip安装 失败问题及解决方案(pip失效时的解决方案)

    在这篇文章里,我简单地叙述了我在使用PyCharm创建一个flask项目时遇到的问题,以及我解决这个问题的过程.其中比较值得注意的点有:①PyCharm创建新项目时的解释器配置②Python虚拟环境的创建等. 注意:很多人学Python过程中会遇到各种烦恼问题,没有人帮答疑容易放弃.为此小编建了个Python全栈免费答疑.裙 :七衣衣九七七巴而五(数字的谐音)转换下可以找到了,不懂的问题有老司机解决里面还有最新Python教程项目可拿,,一起相互监督共同进步! 一.一些名词解释,希望能够帮助大家

  • Vue项目开发常见问题和解决方案总结

    Vue Cli 打包之后静态资源路径不对的解决方法 cli2版本: 将 config/index.js 里的 assetsPublicPath 的值改为 './' . build: { ... assetsPublicPath: './', ... } cli3版本: 在根目录下新建 vue.config.js 文件,然后加上以下内容:(如果已经有此文件就直接修改) module.exports = { publicPath: '', // 相对于 HTML 页面(目录相同) } Vue cli

随机推荐