tensorflow 保存模型和取出中间权重例子

下面代码的功能是先训练一个简单的模型,然后保存模型,同时保存到一个pb文件当中,后续可以从pd文件里读取权重值。

import tensorflow as tf
import numpy as np
import os
import h5py
import pickle
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
#设置使用指定GPU
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
#下面这段代码是在训练好之后将所有的权重名字和权重值罗列出来,训练的时候需要注释掉
reader = tf.train.NewCheckpointReader('./model.ckpt-100')
variables = reader.get_variable_to_shape_map()
for ele in variables:
  print(ele)
  print(reader.get_tensor(ele))

x = tf.placeholder(tf.float32, shape=[None, 1])
y = 4 * x + 4

w = tf.Variable(tf.random_normal([1], -1, 1))
b = tf.Variable(tf.zeros([1]))
y_predict = w * x + b

loss = tf.reduce_mean(tf.square(y - y_predict))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

isTrain = False#设成True去训练模型
train_steps = 100
checkpoint_steps = 50
checkpoint_dir = ''

saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1))

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  if isTrain:
    for i in xrange(train_steps):
      sess.run(train, feed_dict={x: x_data})
      if (i + 1) % checkpoint_steps == 0:
        saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i+1)
  else:
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      saver.restore(sess, ckpt.model_checkpoint_path)
    else:
      pass
    print(sess.run(w))
    print(sess.run(b))
    graph_def = tf.get_default_graph().as_graph_def()
    #通过修改下面的函数,个人觉得理论上能够实现修改权重,但是很复杂,如果哪位有好办法,欢迎指教
    output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['Variable'])
    with tf.gfile.FastGFile('./test.pb', 'wb') as f:
      f.write(output_graph_def.SerializeToString())

with tf.Session() as sess:
#对应最后一部分的写,这里能够将对应的变量取出来
  with gfile.FastGFile('./test.pb', 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
  res = tf.import_graph_def(graph_def, return_elements=['Variable:0'])
  print(sess.run(res))
  print(sess.run(graph_def))

以上这篇tensorflow 保存模型和取出中间权重例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow中权重的随机初始化的方法

    一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的: def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Te

  • tensorflow 模型权重导出实例

    tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,不利于将模型权重导入到其他框架使用(如Caffe.Keras等). 好在tensorflow提供了相关函数 tf.train.NewCheckpointReader 可以对ckpt文件进行权重查看,因此可以通过该函数进行数据导出. import tensorflow as tf import h5py cpktLogFileName = r'./checkpoi

  • Tensorflow读取并输出已保存模型的权重数值方式

    这篇文章是为了对网络模型的权重输出,可以用来转换成其他框架的模型. import tensorflow as tf from tensorflow.python import pywrap_tensorflow #首先,使用tensorflow自带的python打包库读取模型 model_reader = pywrap_tensorflow.NewCheckpointReader(r"model.ckpt") #然后,使reader变换成类似于dict形式的数据 var_dict =

  • tensorflow 输出权重到csv或txt的实例

    实例如下所示: import numpy as np W_val, b_val = sess.run([weights_tensor, biases_tensor]) np.savetxt("W.csv", W_val, delimiter=",") np.savetxt("b.csv", b_val, delimiter=",") 以上这篇tensorflow 输出权重到csv或txt的实例就是小编分享给大家的全部内容了,希

  • 在Tensorflow中查看权重的实现

    刚开始学习tensorflow,还不太会用,开个博记录,今天遇到一个问题是用tf.layers.dense创建的全连接层,如何查看权重? 知道kernel表示了权重,但是如何提示成变量? 我分成两步: 1.查看tensor:tf.trainable_variables() 命令行里中运行即可,如下图: 可以看到tensor的name,或用更简洁的方式:variable_name = [v.name for v in tf.trainable_variables()] 运行后,trainable_

  • tensorflow输出权重值和偏差的方法

    使用tensorflow 训练模型时,我们可以使用 tensorflow自带的 Save模块 tf.train.Saver()来保存模型,使用方式很简单 就是在训练完模型后,调用saver.save()即可 saver = tf.train.Saver(write_version=tf.train.SaverDef.V2) saver.save(sess, save_dir+"crfmodel.ckpt", global_step=0) 重新载入模型 saver = tf.train.

  • tensorflow 保存模型和取出中间权重例子

    下面代码的功能是先训练一个简单的模型,然后保存模型,同时保存到一个pb文件当中,后续可以从pd文件里读取权重值. import tensorflow as tf import numpy as np import os import h5py import pickle from tensorflow.python.framework import graph_util from tensorflow.python.platform import gfile #设置使用指定GPU os.envi

  • 对tensorflow 的模型保存和调用实例讲解

    我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了. 1.模型的保存 # 声明两个变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer(

  • Tensorflow加载预训练模型和保存模型的实例

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in

  • TensorFlow入门使用 tf.train.Saver()保存模型

    关于模型保存的一点心得 saver = tf.train.Saver(max_to_keep=3) 在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小.如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 fine-tune 不一定从最好的 ckpt 进行,因为有可能一下子就过拟合了.但是如果保存太多,硬盘也有压力呀.如果只想保留最好的模型,方法就是每次迭代到一定步数就在验证集上计算一次 accurac

  • 基于keras 模型、结构、权重保存的实现

    如何将训练好的网络进行保存,我们可以用pickle或cPickle来保存Keras模型,同时我们可以用下面的方法: 一.保存整个模型 model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构 模型的权重 训练配置(损失函数,优化器,准确率等) 优化器的状态,以便于从上次训练中断的地方 前提是已经安装python的h5py包. from keras.models import load_model 当我们再一次使用时可以model.load

  • 将TensorFlow的模型网络导出为单个文件的方法

    有时候,我们需要将TensorFlow的模型导出为单个文件(同时包含模型架构定义与权重),方便在其他地方使用(如在c++中部署网络).利用tf.train.write_graph()默认情况下只导出了网络的定义(没有权重),而利用tf.train.Saver().save()导出的文件graph_def与权重是分离的,因此需要采用别的方法. 我们知道,graph_def文件中没有包含网络中的Variable值(通常情况存储了权重),但是却包含了constant值,所以如果我们能把Variable

  • TensorFlow固化模型的实现操作

    前言 TensorFlow目前在移动端是无法training的,只能跑已经训练好的模型,但一般的保存方式只有单一保存参数或者graph的,如何将参数.graph同时保存呢? 生成模型 主要有两种方法生成模型,一种是通过freeze_graph把tf.train.write_graph()生成的pb文件与tf.train.saver()生成的chkp文件固化之后重新生成一个pb文件,这一种现在不太建议使用.另一种是把变量转成常量之后写入PB文件中.我们简单的介绍下freeze_graph方法. f

  • 使用keras和tensorflow保存为可部署的pb格式

    Keras保存为可部署的pb格式 加载已训练好的.h5格式的keras模型 传入如下定义好的export_savedmodel()方法内即可成功保存 import keras import os import tensorflow as tf from tensorflow.python.util import compat from keras import backend as K def export_savedmodel(model): ''' 传入keras model会自动保存为pb

  • 解决tensorflow测试模型时NotFoundError错误的问题

    错误代码如下: NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for xxx -- 经查资料分析,错误原因可能出在加载模型时的路径问题.我采用的加载模型方法: with tf.Session() as sess: print("Reading checkpoints...") ckpt = tf.

随机推荐