计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
  mean_vals = [0.471, 0.448, 0.408]
  std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
  mean_vals = [0.485, 0.456, 0.406]
  std_vals = [0.229, 0.224, 0.225]

计算自己数据集图像像素的均值方差:

import numpy as np
import cv2
import random

# calculate means and std
train_txt_path = './train_val_list.txt'

CNum = 10000   # 挑选多少图片进行计算

img_h, img_w = 32, 32
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []

with open(train_txt_path, 'r') as f:
  lines = f.readlines()
  random.shuffle(lines)  # shuffle , 随机挑选图片

  for i in tqdm_notebook(range(CNum)):
    img_path = os.path.join('./train', lines[i].rstrip().split()[0])

    img = cv2.imread(img_path)
    img = cv2.resize(img, (img_h, img_w))
    img = img[:, :, :, np.newaxis]

    imgs = np.concatenate((imgs, img), axis=3)
#     print(i)

imgs = imgs.astype(np.float32)/255.

for i in tqdm_notebook(range(3)):
  pixels = imgs[:,:,i,:].ravel() # 拉成一行
  means.append(np.mean(pixels))
  stdevs.append(np.std(pixels))

# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()

print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))

以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch的batch normalize使用详解

    torch.nn.BatchNorm1d() 1.BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True) 对于2d或3d输入进行BN.在训练时,该层计算每次输入的均值和方差,并进行平行移动.移动平均默认的动量为0.1.在验证时,训练求得的均值/方差将用于标准化验证数据. num_features:表示输入的特征数.该期望输入的大小为'batch_size x num_features [x width]' Shape: 

  • 计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

    pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有: if 'coco' in args.dataset: mean_vals = [0.471, 0.448, 0.408] std_vals = [0.234, 0.239, 0.242] elif 'imagenet' in args.dataset: mean_vals = [0.485, 0.456, 0.406] std_vals = [0.229,

  • PyTorch加载自己的数据集实例详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力. 数据处理的质量对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练, 更会提高模型性能.为解决这一问题,PyTorch提供了几个高效便捷的工具, 以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载. 数据集存放大致有以下两种方式: (1)所有数据集放在一个目录下,文件名上附有标签名,数据集存放格式如下: root/cat_dog/cat.01.jpg root/cat_dog/cat.02.jpg ...

  • 聊聊基于pytorch实现Resnet对本地数据集的训练问题

    目录 1.dataset.py(先看代码的总体流程再看介绍) 2.network.py 3.train.py 4.结果与总结 本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.py文件,功能是对本地的数据集进行分类.本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍). 对于整个项目的流程首

  • pytorch GAN伪造手写体mnist数据集方式

    一,mnist数据集 形如上图的数字手写体就是mnist数据集. 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的.D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值.因此G和D都在不停地更新权值.以下图为例

  • pytorch学习教程之自定义数据集

    自定义数据集 在训练深度学习模型之前,样本集的制作非常重要.在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程. 开发环境 Ubuntu 18.04 pytorch 1.0 pycharm 实验目的 掌握pytorch中数据集相关的API接口和类 熟悉数据集制作的整个流程 实验过程 1.收集图像样本 以简单的猫狗二分类为例,可以在网上下载一些猫狗图片.创建以下目录: data-------------根目录 data/test-------测

  • pytorch加载自己的数据集源码分享

    目录 一.标准的数据集流程梳理 数据来源 二.实现加载自己的数据集 1. 保存在txt文件中(生成训练集和测试集,其实这里的训练集以及测试集也都是用文本文件的形式保存下来的) 2. 在继承dataset类LoadData的三个函数里调用train.txt以及test.txt实现相关功能 三.源码 一.标准的数据集流程梳理 分为几个步骤数据准备以及加载数据库–>数据加载器的调用或者设计–>批量调用进行训练或者其他作用 数据来源 直接读取了x和y的数据变量,对比后面的就从把对应的路径写进了文本文件

  • pytorch实现建立自己的数据集(以mnist为例)

    本文将原始的numpy array数据在pytorch下封装为Dataset类的数据集,为后续深度网络训练提供数据. 加载并保存图像信息 首先导入需要的库,定义各种路径. import os import matplotlib from keras.datasets import mnist import numpy as np from torch.utils.data.dataset import Dataset from PIL import Image import scipy.misc

  • Pytorch中使用ImageFolder读取数据集时忽略特定文件

    目录 一.使用ImageFolder读取数据集时忽略特定文件 二.ImageFolder只读取部分类别文件夹 一.使用ImageFolder读取数据集时忽略特定文件 如果事先知道需要忽略哪些文件,当然直接从数据集里删除就行了.但如果需要在程序运行时动态确认,或者筛选规则比较复杂,人工不好做,就需要让ImageFolder在读取时使用自定义的筛选规则. ImageFolder有一个可选参数为is_valid_file,参数类型为可调用的函数,该函数传入一个str参数,返回一个bool值.当返回值为

  • Python计算图片数据集的均值方差示例详解

    目录 前言 Python批量reshape图片 参考 计算数据集均值和方差 前言 在做图像处理的时候,有时候需要得到整个数据集的均值方差数值,以下代码可以解决你的烦恼: (做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有: Python批量reshape图片 # -*- coding: utf-8 -*- """ Created on Thu Aug 23 16:06:35 2018 @author

  • pytorch 图像预处理之减去均值,除以方差的实例

    如下所示: #coding=gbk ''' GPU上面的环境变化太复杂,这里我直接给出在笔记本CPU上面的运行时间结果 由于方式3需要将tensor转换到GPU上面,这一过程很消耗时间,大概需要十秒,故而果断抛弃这样的做法 img (168, 300, 3) sub div in numpy,time 0.0110 sub div in torch.tensor,time 0.0070 sub div in torch.tensor with torchvision.transforms,tim

随机推荐