Python Pandas聚合函数的应用示例
目录
- Python Pandas聚合函数
- 应用聚合函数
- 1) 对整体聚合
- 2) 对任意某一列聚合
- 3) 对多列数据聚合
- 4) 对单列应用多个函数
- 5) 对不同列应用多个函数
- 6) 对不同列应用不同函数
- 总结
Python Pandas聚合函数
在前一节,我们重点介绍了窗口函数。我们知道,窗口函数可以与聚合函数一起使用,聚合函数指的是对一组数据求总和、最大值、最小值以及平均值的操作,本节重点讲解聚合函数的应用。
应用聚合函数
首先让我们创建一个 DataFrame 对象,然后对聚合函数进行应用。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4),index = pd.date_range('12/14/2020', periods=5),columns = ['A', 'B', 'C', 'D']) print (df) #窗口大小为3,min_periods 最小观测值为1 r = df.rolling(window=3,min_periods=1) print(r)
输出结果:
A B C D
2020-12-14 0.941621 1.205489 0.473771 -0.348169
2020-12-15 -0.276954 0.076387 0.104194 1.537357
2020-12-16 0.582515 0.481999 -0.652332 -1.893678
2020-12-17 -0.286432 0.923514 0.285255 -0.739378
2020-12-18 2.063422 -0.465873 -0.946809 1.590234Rolling [window=3,min_periods=1,center=False,axis=0]
1) 对整体聚合
您可以把一个聚合函数传递给 DataFrame,示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4),index = pd.date_range('12/14/2020', periods=5),columns = ['A', 'B', 'C', 'D']) print (df) #窗口大小为3,min_periods 最小观测值为1 r = df.rolling(window=3,min_periods=1) #使用 aggregate()聚合操作 print(r.aggregate(np.sum))
输出结果:
A B C D
2020-12-14 0.133713 0.746781 0.499385 0.589799
2020-12-15 -0.777572 0.531269 0.600577 -0.393623
2020-12-16 0.408115 -0.874079 0.584320 0.507580
2020-12-17 -1.033055 -1.185399 -0.546567 2.094643
2020-12-18 0.469394 -1.110549 -0.856245 0.260827A B C D
2020-12-14 0.133713 0.746781 0.499385 0.589799
2020-12-15 -0.643859 1.278050 1.099962 0.196176
2020-12-16 -0.235744 0.403971 1.684281 0.703756
2020-12-17 -1.402513 -1.528209 0.638330 2.208601
2020-12-18 -0.155546 -3.170027 -0.818492 2.863051
2) 对任意某一列聚合
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4),index = pd.date_range('12/14/2020', periods=5),columns = ['A', 'B', 'C', 'D']) #窗口大小为3,min_periods 最小观测值为1 r = df.rolling(window=3,min_periods=1) #对 A 列聚合 print(r['A'].aggregate(np.sum))
输出结果:
2020-12-14 1.051501
2020-12-15 1.354574
2020-12-16 0.896335
2020-12-17 0.508470
2020-12-18 2.333732
Freq: D, Name: A, dtype: float64
3) 对多列数据聚合
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4),index = pd.date_range('12/14/2020', periods=5),columns = ['A', 'B', 'C', 'D']) #窗口大小为3,min_periods 最小观测值为1 r = df.rolling(window=3,min_periods=1) #对 A/B 两列聚合 print(r['A','B'].aggregate(np.sum))
输出结果:
A B
2020-12-14 0.639867 -0.229990
2020-12-15 0.352028 0.257918
2020-12-16 0.637845 2.643628
2020-12-17 0.432715 2.428604
2020-12-18 -1.575766 0.969600
4) 对单列应用多个函数
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4),index = pd.date_range('12/14/2020', periods=5),columns = ['A', 'B', 'C', 'D']) #窗口大小为3,min_periods 最小观测值为1 r = df.rolling(window=3,min_periods=1) #对 A/B 两列聚合 print(r['A','B'].aggregate([np.sum,np.mean]))
输出结果:
sum mean
2020-12-14 -0.469643 -0.469643
2020-12-15 -0.626856 -0.313428
2020-12-16 -1.820226 -0.606742
2020-12-17 -2.007323 -0.669108
2020-12-18 -0.595736 -0.198579
5) 对不同列应用多个函数
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4), index = pd.date_range('12/11/2020', periods=5), columns = ['A', 'B', 'C', 'D']) r = df.rolling(window=3,min_periods=1) print( r['A','B'].aggregate([np.sum,np.mean]))
输出结果:
A B
sum mean sum mean
2020-12-14 -1.428882 -1.428882 -0.417241 -0.417241
2020-12-15 -1.315151 -0.657576 -1.580616 -0.790308
2020-12-16 -2.093907 -0.697969 -2.260181 -0.753394
2020-12-17 -1.324490 -0.441497 -1.578467 -0.526156
2020-12-18 -2.400948 -0.800316 -0.452740 -0.150913
6) 对不同列应用不同函数
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(3, 4), index = pd.date_range('12/14/2020', periods=3), columns = ['A', 'B', 'C', 'D']) r = df.rolling(window=3,min_periods=1) print(r.aggregate({'A': np.sum,'B': np.mean}))
输出结果:
A B
2020-12-14 0.503535 -1.301423
2020-12-15 0.170056 -0.550289
2020-12-16 -0.086081 -0.140532
总结
到此这篇关于Python Pandas聚合函数的文章就介绍到这了,更多相关Python Pandas聚合函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!